Massachusetts Institute of Technology

Department of Physics

8.01 ~ Final Exam Equation Summary

1. Common Interactions

Friction

- Static friction: $0 \leq f_{s} \leq \mu_{s} N$
- Kinetic friction: $f_{k}=\mu_{k} N$ opposes motion.

2. Systems of Particles \& Rigid Bodies

3. Kinematics

Definitions

- Linear: $\overrightarrow{\boldsymbol{v}}=\frac{\mathrm{d} \overrightarrow{\boldsymbol{x}}}{\mathrm{d} t}$
- Rotational: $\omega=\frac{\mathrm{d} \theta}{\mathrm{d} t} \quad \alpha=\frac{\mathrm{d} \omega}{\mathrm{d} t}=\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}$

Circular Motion

- Arc length: $s=R \theta$
- Velocity $\overrightarrow{\boldsymbol{v}}=R \frac{\mathrm{~d} \theta}{\mathrm{~d} t} \hat{\boldsymbol{\theta}}=R \omega \hat{\boldsymbol{\theta}}$
- Acceleration:

$$
\boldsymbol{a}=-\omega^{2} R \hat{\boldsymbol{r}}+R \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} t^{2}} \hat{\boldsymbol{\theta}}=-\frac{v^{2}}{R} \hat{\boldsymbol{r}}+R \alpha \hat{\boldsymbol{\theta}}
$$

4. Simple Harmonic Motion

Motion
$x(t)=A \cos (\omega t)+B \sin (\omega t)$

Definitions

$$
\text { - Period } T=2 \pi / \omega \quad \text { •Frequency } f=1 / T
$$

5. Central Force Motion

Two-body problem
Two bodies of masses m_{1} and m_{2} behave like a single body of mass μ orbiting around the common centre of mass, where

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

Elliptical orbits

$$
\begin{aligned}
E & =\frac{1}{2} m v^{2}+U(r) \\
& =\frac{1}{2} m v_{\hat{r}}^{2}+\frac{1}{2} m v_{\hat{\theta}}^{2}+U(r) \\
& =\frac{1}{2} m v_{\hat{r}}^{2}+\frac{L^{2}}{2 \mu r^{2}}+U(r) \\
& =K_{\text {eff }}+U_{\text {eff }}
\end{aligned}
$$

6. Work \& Energy

Kinetic Energy

- Linear: $\frac{1}{2} m v^{2} \quad$ - Rotational: $\frac{1}{2} I \omega^{2}$

Work done by a Force
$W=\int_{\text {original position }}^{\text {final position }} \overrightarrow{\boldsymbol{F}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{r}}$
Work-Energy Theorem
$U_{\text {initial }}+K E_{\text {initial }}=U_{\text {final }}+K E_{\text {final }}+W$
Potentials \& Conservative Forces
$P E_{\mathrm{at} r}=-\int_{\text {position of potential }}^{r} \boldsymbol{F} \cdot \mathrm{~d} \boldsymbol{r}$

7. DYnAMICS

- For a point particle, only the translational part need be considered.
- For a body rotating but not translating, only the rotational part need be considered, but the moment of inertia I must be taken about the correct axis.

Equations of Motion

$$
\overrightarrow{\boldsymbol{\tau}}=I \overrightarrow{\boldsymbol{\alpha}}=\frac{\mathrm{d} \overrightarrow{\boldsymbol{L}}}{\mathrm{~d} t} \quad \overrightarrow{\boldsymbol{F}}=m \overrightarrow{\boldsymbol{a}}=\frac{\mathrm{d} \overrightarrow{\boldsymbol{p}}}{\mathrm{~d} t}
$$

Linear Impulse

$$
\overrightarrow{\boldsymbol{I}}=\int_{\text {start time }}^{\text {end time }} \overrightarrow{\boldsymbol{F}} \mathrm{d} t
$$

Angular Impulse

$$
\overrightarrow{\boldsymbol{J}}=\int_{\text {start time }}^{\text {end time }} \overrightarrow{\boldsymbol{\tau}} \mathrm{d} t=\int_{\text {start time }}^{\text {end time }} \overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}} \mathrm{d} t=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{I}}
$$

Impulse/Momentum Principle

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{I}}=\overrightarrow{\boldsymbol{p}}_{\text {after impulse }}-\overrightarrow{\boldsymbol{p}}_{\text {before impulse }}=\Delta \overrightarrow{\boldsymbol{p}} \\
& \overrightarrow{\boldsymbol{J}}=\overrightarrow{\boldsymbol{L}}_{\text {after impulse }}-\overrightarrow{\boldsymbol{L}}_{\text {before impulse }}=\Delta \overrightarrow{\boldsymbol{L}}
\end{aligned}
$$

