MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics
 Physics 8.01T - Section L05 - Quiz 2

Name: \qquad Table \& Group Number: \qquad

A block of mass m_{1} rests at a distance x up a wedge (angle θ) which is itself attached to a table (the wedge does not move in this problem). An inextensible string is attached to m_{1}, passes over a frictionless pulley at the top of the wedge, and is then attached to another mass m_{2}, with $m_{2}<m_{1}$. The coefficient of friction between m_{1} and the plane is μ. The string and wedge are long enough to ensure neither mass hits the pulley or the table in this problem.

Part (A) - roughly 70 points
The system is released from rest as shown above, at $t=0$. How long does mass m_{1} take to hit the table? (Hint: find the acceleration of the block when it is released).

Part (B) - roughly 30 points
A force of magnitude $|\boldsymbol{F}|=b t$ now acts on mass m_{1}, pushing it up the plane. The system is released as shown above at $t=0$. The mass starts moving down the plane, but then starts moving back up. Calculate the time t at which the mass stops moving down the plane. You may assume that this happens before the mass hits the table.

[^0]
[^0]: Remember - to get full points, you must draw any diagrams you used and outline your strategy (either before, during or after your solution to the problem) and you must make it clear what your are doing at each point in the problem. Don't just put a jumble of equations down on the paper.

