
Physics Review  Page 6 

  Daniel Guetta – guetta@mit.edu 

Continuous Mass Transfer 

 

1. Introduction 

• In dealing with collisions, we were dealing with events happening at particular 

points in time. On a timeline, it’d look something like this 

 
• We’re now going to deal with a more complicated situation, in which collisions are 

happening continuously. Things are happening like this 

 
• This problem is obviously much more difficult, and we want to make it easier. We 

do that by splitting the problem into lots of mini-collisions: 

 
We assume that each collision occurs over a very small time dt. As we make dt 

smaller and smaller, and the collisions become closer and closer to each other, we 

end up with the continuous case. 

• This gives us a differential equation, which effectively describes how the system 

changes with time. The differential equation can then be solved. 

Start looking 

at the system 

Stop looking 

at the system 

Lots of mini-collisions occurring 

Start looking 

at the system 

Stop looking 

at the system 

Stuff’s 

happening 

Start looking 

at the system 

Stop looking 

at the system 
Something 

happens! 

Nothing’s 

happening 

Nothing’s 

happening 
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• The general method to solve any such problem is therefore 

1. Find the mini-collision and set up “before” and “after” diagrams for the 

collision. 

2. Treat the mini-collision as a normal collision – apply “External Impulse = 

Change of momentum”. 

3. Make dt smaller and smaller until we get the continuous case. Get a 

differential equation.  

4. Solve the differential equations obtained. 

• The handout will guide you through each of these steps one by one. 

 

2. Setting up the problem – finding the mini-collision 

• The first skill we have to get clear is setting up the problem, and deciding what 

mini-collision we need to take into account. 

• This is the hardest part, because it’s the part that involves all the physics. 

• The trickiest part is to correctly determine the velocities in the problem. Think 

carefully – the following questions might help: 

o What frame are you drawing your diagram with respect to? The ground 

frame? The frame of the object? 

� In some cases, it makes the algebra easier to draw the system in the 

frame of the object.  

� It is usually conceptually easier, though, to draw the system in the 

ground frame. 

In example 2 below, we’ll show you both options. 

o Are you given velocities relative to the ground (as in example 1 below) or 

relative to something else in the system (as in example 2 below)? 

o Are you considering the right dimension (ie: do you care about vertical or 

horizontal motion? For example, if a cart is on a road and you’re looking to 

see how fast it’ll move forward as a result of stuff falling into it, the vertical 

velocity of the stuff falling into it hardly matters. See example 3 for a real-

life case. 

• We’ll do a few examples to show you how it’s done. 
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2.1 – Dealing with the simplest kind of problem 

 
What’s happening in this case? Ben is continuously colliding with an incoming jet of 

water, picks up the water, and, as a result speeds up. 
 

We can split this into lots of mini-collision, each involving a tiny bit of water hitting 

Ben and taking a time dt. What would the situation look like before and after this 

mini-collision? We draw our diagram with respect to the ground: 

 
Time to introduce some symbols – what do we know about the situation before the 

collision, and after? 

o Before 

� We know the tiny bit of water is moving at a speed u (because we’re 

told in the question) and we denote the small bit of mass dm. 

� We denote the mass of Ben as m(t) and his speed as v(t)1 

                                                 

1 Common mistake – a common mistake here is to assume that 

• Ben’s speed before is 0 (because the question tells us he starts at rest) 

Example 1 

Ben is standing in a trolley at rest (combined mass is mb). Katie is 

standing on the ground with a powerful hose directed towards 

Ben, and she starts continuously spraying him with water, which 

hits him at a speed u and falls into the trolley. What mass of 

water must Katie spray to get Ben moving at a speed V? 

Before After 

Ben 

+ 

trolley 

Little bit of water 

about to hit him 

Ben + cart + little 

bit of water he’s 

picked up 

Collision takes a time dt 
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o After 

� As a result of the collision, Ben has picked up water, so his mass has 

increase to m(t) + dm. 

� As a result of the collision, Ben’s speed has also increase – and we’ll call 

his new speed +v vd .2 

So, our fully-fleshed out diagram for the mini-collision looks like 

 
Which is what we wanted. 

 

                                                                                                                                                                

• His mass before is mb (before anything has happened, the combined mass of Ben and the trolley is 

mb). 

However, this is wrong. The reason is that these conditions are true at the start of the problem – indicated 

by the dotted circle in this diagram: 

Start looking 

at the system 

Stop looking 

at the system 

Mini collision 
Before After 

 
However, this is not what we want! We want the points “before” and “after” any mini-collision at any time 

in the motion (the two black arrows). At those points, Ben will be moving, and his mass will have 

increased due to water that was sprayed since the start. 

2 Many people are confused by the fact the variable u doesn’t appear in the speed after the collision – surely, 

the speed at which Ben and the trolley move depends on how fast the water hit them. Of course, this is 

true – but remember that dv depends on u! 

Before After 

 

m(t) 

 

m(t) + dm 

Collision takes a time dt 

dm u v v + dv 

+ 
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2.2 – Dealing with relative velocities & Impulses 

We’ll deal with both these situations with one example: 

 
Again, there is a continuous collision between the rocket and the fuel leaving the 

rocket. We split it into a number of mini-collisions, and ask what things look like 

before and after each mini-collision. We first do this with respect to the ground frame: 

 
And this is effectively what we wanted. Let’s understand why the speed of the ejected 

fuel is u – v: 

• The speed with respect to the rocket is u downwards, and the rocket is moving 

upwards with speed v. So the resulting speed downwards is u – v. 

• You should have been bothered, though, by the statement that “the rocket is 

moving upwards with speed v” – surely, it’s moving upwards with a speed that’s 

between v and v + dv. So how can we justify dropping the dv? The reason is 

that the mass we’re talking about (the ejected fuel) has mass dm. So if we were 

to keep the dv in the velocity, all we’d be adding to the momentum is a dmdv 

Before After 
Collision takes a time dt 

Rocket with 

less fuel 
 

m(t) – dm 

Fuel  dm 

v 

v + dv 

u – v 

Rocket 
 

m(t) 

mg 

+ 

Example 2 

A rocket moves upwards in a constant gravitational field of 

strength g by ejecting fuel at a rate σ  kg/s downwards, at a 

speed u relative to the rocket. The rocket has mass M, and 

originally contains m0 kg of fuel. The rocket starts at rest. How 

long till the rocket reaches its escape velocity? 
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term. This is the product of two infinitesimal quantities, and which can 

therefore be ignored (as we’ll see below). 

This is exactly the same reason we use m as opposed to m + dm in our expression for 

the force on the system. Later on, you’ll see that to find impulse, we have to multiply 

this force by dt, and so the dm dt terms will vanish. 

 

Note that in this case, it also makes sense to draw the system in the frame of the 

rocket. As you’ll see later, this can make the algebra much easier. In that frame, the 

system looks like this: 

 
The concept of this frame is pretty subtle, so let’s flesh it out 

• Remember that we’re considering a mini-collision here, which could occur at any 

point in the motion. The frame we’re considering is one which is moving with 

the rocket at the start of that particular mini-collision. Therefore, the frame 

we’re considering will change throughout the motion, because the rocket is 

speeding up. But this is fine, because we can watch each collision in any frame. 

• In spite of that, however, we must assume that the frame remains the same 

during the small interval of time dt. This becomes more and more accurate as 

dt gets smaller and smaller. We do this for exactly the same reason we ignored 

dv when working out the relative velocity above  

 

Before After 
Collision takes a time dt 

Rocket with 

less fuel 
 

m(t) – dm 

Fuel  dm 

dv 

u 

Rocket 
 

m(t) 

mg 
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2.3 – An example with a confusing relative velocity 

 
This problem is slightly less obvious. The continuous collision is between the plane and 

the ejected fluid. The diagram in the ground frame is 

 
Let’s make two important points regarding this diagram 

• Notice that even though the question doesn’t mention it, the bit of water that 

leaves the plane has a vertical speed v (because it’s released from the plane).3 

• We’ve included the quantities mg and u in this diagram. However, that was just 

to check if you were paying attention, because there is no reason those should 

be in there! This problem is only concerned with horizontal motion, and so only 

horizontal quantities are relevant. 

                                                 

3 Once again, we don’t write v + dv for the same reasons as above… 

Before After 
Collision takes a time dt 

Plane with less 

water 
 

m(t) – dm 

Water  dm 

v 

u 

Plane 
 

m(t) 

mg 

v + dv 

v 

F 

+ 

+ 

Example 3 

A plane flies over a forest fire and sprays water over it in an 

attempt to extinguish it. The crew member in the plane sprays 

the water directly downwards at a speed u and at a rate σ  kg/s. 

The plane’s motor provides a constant horizontal thrust force F 

and the plane’s original horizontal velocity is v0. Given that the 

plane has mass M and is originally loaded with a mass of water 

m0, find the plane’s horizontal velocity a time t later. 
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The diagram we want therefore looks like 

 
 

Once again, it could make the algebra simpler to draw it in the frame of the plane: 

 
 

2.4 – An example with a confusing question! 

This is one of the hardest problems you’re likely to encounter 

 
The first question you should be asking yourself is “what is this question asking me 

for”? It wants the weight the balance will display, but what does that mean physically? 

Answer: it wants the force that will be acting on the balance pan – because this is 

what causes the balance to record weight. 
 

This actually makes sense – the rope is constantly colliding with the balance and being 

brought to rest by it, and so we’d expect the balance to exert some impulse as a result 

Example 4 

A rope of length L and density ρ  kg/m is dropped on a balance. 

What weight will the balance display as a function of time? 

Before After 
Collision takes a time dt 

Plane with less 

water 
 

m(t) – dm 

Water  dm 

Plane 
 

m(t) 

dv 

F 

Before After 
Collision takes a time dt 

Plane with less 

water 
 

m(t) – dm 

Water  dm 

v 

Plane 
 

m(t) 

v + dv 

v 

F 

+ 

+ 
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of these collisions, to bring each small bit of rope to rest. This will affect the weight 

reading. 
 

Armed with this knowledge, let’s consider a mini-collision. This will clearly occur 

between a small piece of rope that’s about to be brought to rest, and the rest of the 

rope that’s already at rest on the balance 

 
Again, let’s flesh out this diagram with a few comments: 

• We have denoted by F the force exerted by the balance on the rope during the 

collision. 

• In this particular case, we can find v in terms of m(t) or t by using simple 

kinematics (the rope is falling under gravity). This will be useful later on. 

• We have also written down the force of gravity acting on the system. For 

exactly the same reason as above, we have not included dm in this expression, 

because the term will eventually disappear when we multiply it by dt to get the 

impulse. 

 

3. Applying “Impulse = Change of Momentum” 

We’re now ready to apply “Impulse = Change of Momentum”. This is usually the 

simplest step and embodies the physics of the problem. We need to consider both sides of 

this equation 

Before After 
Collision takes a time dt 

dm 

v 

Rope already at rest 
 

m(t) 

F 

Balance 

Small bit of rope 

about to drop 

Rope at rest 
 

m(t) + dm 

mg 

+ 
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• To find the change in momentum, simply find the momentum of the system after 

the mini-collision and subtract the momentum before the mini collision. 

• To find the impulse, simply multiply the force acting by the time interval over 

which it acts (dt). We assume that dt is so small that the force does not vary 

during that time. 

• In all cases, if you ever encounter the product of two infinitesimal quantities (for 

example, dv dt, you can just ignore it). Superficially, this is because something 

very small multiplied by something very small gives something absolutely tiny 

which can be ignored. If you take more advanced analysis classes (course 18), 

you’ll see why this is justified. 

As usual, the best way to learn is by example, so let’s go! 

 

2.1 – Example 1 

In this case, there is no impulse on the system. As such, using the diagram 

( )( ) ( )

Change in momentum 0

Momentum after Momentum before 0

d d d 0m m v v u m vm

mv

=

− =

+ + − + =

d d d dm v v m m v+ + + du m mv− − 0

d ( )d 0m v v u m

=

+ − =

 

 

2.2 – Example 2 

This time, we do have an impulse acting on the system. The force acting is –mg, and 

so the impulse will be –mg dt. As such 

( )( ) ( ) ( )

Change in momentum d

Momentum after Momentum before d

d d d d

mg t

mg t

v v m m u v m mv mg t

mv

= −

− =−

+ − − − − =−

dv m− d d dm v m v+ − d du m v m− + mv− d

d d d

mg t

m v u m mg t

= −

− =−

 

 



Physics Review  Page 16 

  Daniel Guetta – guetta@mit.edu 

Note that if we had directly used the second diagram in which we considered the 

situation in the frame of the rocket, our equations would have looked like 

( ) ( )

Change in momentum d

Momentum after Momentum before d

d d d 0 d

d d d

mg t

mg t

m m v u m mg t

m v m v

=−

− = −

− − − = −

− d d

d d d

u m mg t

m v u m mg t

− = −

− = −

 

This is exactly the same result as above. However, I’m sure you’ll agree it was much 

easier to obtain algebraically… This is what often makes the second method useful. 

 

2.3 – Example 3 

Again, there is an impulse on the system. We’re interested in the horizontal dimension, 

and the impulse is F dt. As such, we get 

( )( )

Change in momentum d

Momentum after Momentum before d

d d d d

F t

F t

m m v v v m mv F t

mv

=

− =

− + + − =

d dm v v m+ − d dm v− dv m+ mv− dF t

mv

=

d dm v v m+ − d dm v− dv m+ mv− d

d d

F t

m v F t

=

=

 

 

Once again, if we’d used the second diagram of the situation in the frame of the plane, 

we’d have obtained 

( )

Change in momentum d

Momentum after Momentum before d

d d 0 d

d d d

F t

F t

m m v F t

m v m v

=

− =

− − =

− d

d d

F t

m v F t

=

=

 

Once again, exactly as above. 
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2.4 – Example 4 

This time, our impulse is due to two forces, and so 

( )
( )

( ) ( )
( )

Change in momentum d

Momentum after Momentum before d

0 d d

d d

F mg t

F mg t

v m F mg t

v m F mg t

= −

− = −

− = −

= −

 

 

4. Moving to the continuous case by making dt →→→→ 0 

Moving to the continuous case is a no-brainer. All you need to do is divide the equation 

obtained by dt. As dt  tends to 0, the ratios of infinitesimal quantities tend to 

differentials. If you were doing a more advanced math course, we’d have to think more 

carefully about what you were doing (using limits, etc…). But for 8.01, just divide by dt 

and you’ll get your differential equation! 

 

However, there is a crucial point that is easy to miss – and that is to keep track of what 

the “m” in your equations above refers to. Read this carefully: 

• Usually, in your final equation, you want m to refer to the mass of the 

rocket/cart/plane/spaceship, etc…, because this is the mass of interest in the 

question. 

• However, in your equations above, dm does not refer to that – it refers to the 

small mass being ejected/taken in. 

• Now, it’s clear that this won’t make a difference to the magnitude of dm, because 

the change in mass of the rocket is equal to whatever is ejected/taken in. 

• However, it might make a difference to the sign of dm. Consider [I’ll assume we’re 

using a rocket, but replace “rocket” by “cart/plane/etc…” where appropriate!] 

o If mass is taken in, then dmtaken in = dmrocket because an increase in amount 

of material taken in is equivalent to an increase in the rocket mass. 

o However, if mass is ejected, then dmejected = –dmrocket because an increase in 

amount of material ejected is equivalent to a decrease in rocket mass. 

• We’ll have to be extremely careful, in the calculations below, to use the right sign. 
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3.1 – Example 1 

d ( )d 0

d d
( ) 0

d d

m v v u m

v m
m v u

t t

+ − =

+ − =
 

This is correct, because water is being added to the cart. 

 

3.2 – Example 2 

d d d

d d

d d

m v u m mg t

v m
m u mg

t t

− = −

− = −
 

However, we need to flip the sign, because stuff is leaving the rocket 

d d

d d

v m
m u mg

t t
+ = −  

 

3.3 – Example 3 

d d

d

d

m v F t

v
m F

t

=

=
 

[Note that we’ve just recovered F = ma! The mass dropping out of the plane has no 

effect. Can you think why? Think of the Calvin and Hobbs problem in Test 1]. There’s 

no sign splitting to do, because dm doesn’t appear here! 

 

3.4 – Example 4 

( )d d

d

d

v m F mg t

m
v F mg

t

= −

= −
 

In this case every extra bit of chain is adding to the lump of chain, so the sign is right. 

 

3.5 – Boring note 

It might be useful for you to sit and reflect on the relevance of what we’ve obtained. 

We found a differential equation. What that tells us is how things change over a small 

time interval. In other words, it’s a very concise mathematical statement of the effect 
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of a mini-collision. We now need to find a way to sum all these effects over the whole 

motion… enter integration ☺!! 

 

5. Solving the differential equation 

Solving the differential equation involves no physics and some horrible maths. We’ll try 

and make the process as painless as possible! 
 

To solve these problems, we note that there are always three variables involved 

• The mass of the thing 

• The velocity of the thing 

• The time that has elapsed. 
 

Most problems you’ll be given will require you to do one of three things 

1. Find a relation between mass and velocity (For example “find the speed of the 

rocket after it’s ejected all its fuel” or “find the velocity of the rocket as a function 

of its mass”, etc…) – example 1. 

2. Find a relation between velocity and time (For example: “find the speed of the cart 

10 seconds after it has been launched” or “how long will the rocket take to reach the 

earth’s escape velocity”) – examples 2 and 3. 

3. Find something to do with the force/impulse – example 4. 
 

Cases 1 and 2 are very similar and involve the same first steps, but case 2 involves an 

extra step at the end… Case 3 is completely different. Let’s cover each in turn. 

 

5.1 – Finding the relationship between velocity and mass 

Finding the relationship between velocity and mass involves two simple steps 

1. Separate variables 

2. Integrate – this must be with respect to time, because when adding up all 

our mini-collisions, we’re summing over a continuum of time. 

3. Pick limits 

Again, it makes sense to show you how to do this by example… The first example will 

be the most detailed to describe the principle, and then we’ll go faster. 
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5.1.1 – Example 1 

The differential equation we ended up with was 

d d
( )

d d

v m
m u v

t t
= −  

Now, consider – what would happen if we just integrated with respect to time? 

d

d

v
m

t
dt

d
( )

d

m
u v

t
= −∫ dt

( )d ( ( ))dm t v u v t m= −

∫

∫ ∫
 

We have a problem – this integral cannot be done. Why? Because m is not a 

constant – it’s a function of time – and so is v. Therefore, when we integrate with 

respect to another variable, the integral is not easy. 
 

To fix this problem, we need to go back to the differential equation and re-arrange 

it so that each side is a function of one variable only. In this case, our differential 

equation was 

d d
( )

d d

v m
m u v

t t
= −  

Let’s divide both sides by m and u – v. We then get 

1 d 1 d

d d

v m

u v t m t
=

−
 

Now, integrate with respect to time 

1 1
d dv m

u v m
=

−∫ ∫  

And now this integral can be done, because u is a constant and we can easily 

integrate m and v with respect to themselves. 
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Now, let’s think of the limits of integral the general rule with limits is as follows: 

 
What do we mean by “start” and “end” of the motion considered? We mean the 

two end-points of the motion: 

 
We are no longer considering mini-collisions. We are considering the whole event. 
 

So, in this particular problem, we are told 

• That the cart starts at rest 

• That the original mass of the cart+ben is mb. 

We want to know how much water needs to be sprayed for it to reach a final speed 

V. In other words: 

• The final speed we want in the equation above is V. 

• The final mass we want is mb + M, where M is the unknown amount of 

water. 
 

So: 

( )
0

0

1 1
d d

ln ln

b

b

b

b

V m M

m

V m M

m

v m
u v m

u v m

+

+

=
−

   − − =      

∫ ∫
 

[Note the minus sign in the LHS integral!] 

Start looking 

at the system 

Stop looking 

at the system 

1 1
d dv m

u v m
=

−∫ ∫

v and m at the end of the 

motion considered 

v and m at the start of the 

motion considered 
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( ) ( ) ( )ln ln ln ln

ln ln

1

b b

b

b

b

b

b

u V u m M m

m Mu

u V m

m Mu

u V m

u
M m

u V

− − + = + −
   +   =    −   
+

=
−

  = −   − 

 

And this is our answer. 

 

5.1.2 – Example 2 

The differential equation we had obtained was 

d d

d d

v m
m u mg

t t
+ = −  

To separate variables, all we really need to do is divide by m 

d d

d d

v u m
g

t m t
+ =−  

At this point, we’ll pause, because the problem asks us to find velocity in terms of 

time, and so a slightly different method is needed, which we’ll cover in the next 

section. 

 

5.1.3 – Example 3 

The differential equation we had was 

d

d

v
m F

t
=  

Again, dividing by m does the trick: 

d

d

v F

t m
=  

 

5.2 – Finding the relationship between velocity and time 

For these problems, an extra bit of information is needed – namely, we need to know 

how m changes with t. Using this information, we can find dm/dt, and feed it into our 

equation before we integrate. 
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5.2.1 – Example 2 

We found, for this example, that the differential equation was 

d d

d d

v u m
g

t m t
+ =−  

We are told in the question that “the rocket ejects fuel at a rate σ  kg/s”. This 

means that 

�

AmountOriginal mass
ejectedof fuel

0

d

d

m M m t

m

t

σ

σ

= + −

=−

���������

 

Putting this into the equation above 

0

0

d

d
d

d

d

d

v u
g

t m
v u

g
t M m t

v u
g

t M m t

σ

σ
σ

σ

σ

− =−

− =−
+ −

= −
+ −

 

Now, we can integrate with respect to t 

0

0

d
d d

d

d d

v u
t g t

t M m t

u
v g t

M m t

σ

σ

σ

σ

= −
+ −

= −
+ −

∫ ∫

∫ ∫
 

To find the limits, we note that 

• The rocket starts at rest and needs to reach a final speed vesc 

• The rocket starts at t = 0 and ends at a time T, which we need to find 

So 

( )
( ) ( )

0 0
0

00 0

0 0

0

0

d d

ln

ln ln

ln

esc

esc

v T

Tv

esc

esc

u
v g t

M m t

v u M m t gt

v u M m T gT u M m

M m
v u gT

M m T

σ

σ

σ

σ

σ

= −
+ −

   = − + − −      
= − + − − + +

 +  = −  + − 

∫ ∫

 

Which we could find T from numerically. 
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5.2.2 – Example 3 

For example 3, the differential equation we obtained was 

d

d

v F

t m
=  

In this case 

0
m M m tσ= + −  

And so 

0

d

d

v F

t M m tσ
=

+ −
 

We know that 

• The original velocity of the plane is v0 and it’s final velocity is an unknown 

V. 

• The plane starts at t = 0 and ends at t = T (a variable in the problem). 

So 

( )

( ) ( )

0
0

0

0 0

0

0 0 0

0
0

0

d d

ln

ln ln

ln

V T

v

T

F
v t

M m t

F
V v M m t

F F
V v M m T M m

M mF
V v

M m T

σ

σ
σ

σ
σ σ

σ σ

=
+ −

 
 − = − + − 
 

− = − + − + +

 +  = +   + − 

∫ ∫

 

Which is precisely what we wanted. 

 

5.3 – Finding something about the force/impulse 

In example 4, we found that 

d

d
d

d

m
v F mg

t
m

F v mg
t

= −

= +
 

We noted above, however, that what we want to find in this case is F – because this 

will indicate the weight that the balance will read. To do this, then, we must find 

expressions for the quantities on the RHS… Let’s do it! 



Physics Review  Page 25 

  Daniel Guetta – guetta@mit.edu 

• Find an expression for v in terms of t 

To do this, we must first ask – what is v? Answer: v is the velocity of the 

piece of the chain that’s about to hit at a time t. 
 

So – let’s look at that “small piece of chain” and follow its trajectory 

o It starts off at rest before the chain is dropped. 

o It is accelerated by gravity only, and so we can use kinematics to find 

its velocity when it reaches the balance after a time t 

0f

f

v v at

v gt

= +

=
 

And so 

( )v t gt=  

• Finding an expression for m in terms of t 

To do this, we must first ask – what is m? Answer: m is the amount of rope 

that’s already on the balance at time t. 
 

To find it, consider h – the length of rope that has already hit at time t. 

Consider a small piece of rope about to hit and consider its trajectory: 

o It started off at rest before the chain was dropped, at a height h. 

o It is accelerated by gravity only, and so we can use kinematics to find 

an expression for h 

21
0 2

21

2

x v t at

h gt

= +

=
 

The mass of this amount of rope is hρ , and so 

21

2
( )

d

d

m t gt

m
gt

t

ρ

ρ

=

=
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Feeding these items into our equation 

( ) ( )21

2

2 2 2 21

2

2 2

d

d

3

2

m
F v mg

t
F gt gt gt g

F g t g t

F g t

ρ ρ

ρ ρ

ρ

= +

= × + ×

= +

=

 

And so the mass displayed by the balance is 

2

displayed

3

2

F
m gt

g
ρ= =  

Which is precisely what we wanted! 

 


