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FOUNDATIONS OF STOCHASTIC 

MODELING 

LECTURE 1 – 19th January 2010 

Probability Preliminaries 

 Set operations 

o When we talk of a probability space, we quote a triple ( ), ,W   , where 

 W  is the space of outcomes 

   is a s -field – the space of “admissible sets/events”. The sets we will 

be talking about henceforth reside in  . 

   is a probability distribution/measure based on which statements are 

made about the probability of various events. : [0,1]  . In particular, 

for A Î  , ( )( ) :A Aw w= Î W Î  . 

o Note the following basic property of unions and intersections of sets 

c c

n nn n
A Aé ù =ê úë û   

Or equivalently: 

cc

n nn n
A Aé ù= ê úë û   

o When we say an event A holds “almost surely”, we mean that 

 ( ) 1A =  

 A Î   (in other words, A is measurable). We will assume this always 

hold throughout this course and omit this condition. 

o Proposition: Let { }n
A  be a sequence of (measurable) events such that 

( ) 1
n

A =  for all n. Then ( ) 1
nn

A = . 

Proof: First consider that 
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c c
n nn n

A Aé ù =ê úë û   

Then consider that, using the union bound 

( ) ( )
( )1

0

0

c c

n nn n

nn

n

A A

A

£

= -
=
=

å
å
å

 
  

The union bound, used in the first line, simply states that if we add the 

probability of events without subtracting their intersections, the result will be 

greater than when considering the union (which leaves out intersections).  

o Definition (limsup and liminf): Let { }n
a  be a real-value sequence. Then we 

write 

lim sup : inf sup
n n m n nm
a a³=  

This is the least upper bound on that sequence. Similarly 

lim inf : sup inf
n n m n nm
a a³=  

Graphically (source: Wikipedia): 

 

Note that these limits need not be finite. 

Remarks: 

 If lim sup
n n
a a< , then 

n
a a<  eventually (ie: for sufficiently large n). If 

lim sup
n n
a a> , then 

n
a a>  infinitely often – in other words, there are 

infinitely many elements in the sequence above a. 

 Similarly, lim inf  ev.
n n n
a a a a >>  and  i.o.lim inf

n n
a aa a  <<  

We now attempt to extend this definition to sets. 

o Definition (limsup and liminf for sets): Let { }n
A  be a sequence of 

measurable sets. Then 

n
a

n

lim sup
n n

a¥

lim inf
n n

a¥
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lim sup : lim

lim inf : lim
n n n m nm n n

n n

m m

m n m nm n n m

A A A

A A A
³ ³

³



³

¥

¥

= =
= =

 
  

 

We can interpret these as follows. The lim sup of An is the set of events that are 

contained in infinitely many of the An (but not necessarily in all the An past a 

point – the event could “bounce in and out” of the An) 

{ } { }:  i.o.lim sup
nn n

A Aw wÎ W Î=  

Similarly, the lim inf of An is the set of events that eventually appear in an An 

and then in all An past that point. 

{ } { }:  ev.lim inf
n n n

AA w wÎ W Î=  

Clearly, if an event is in the lim inf, it also appears infinitely often (because it 

appears in all the An past a point, and so l lim supim inf
n nn n

A AÍ . 

Remark: Take { } { }, ev. lim inf
n n n

A A= . Then 

{ }
( ){ }

{ }

,  ev.

lim inf

,  i.o.

cc

n nm n

c

nm n

c

nm n
c

n n

m

m

c

n

m

A A

A

A

A

A

³

³

³

é ù= ê úë û

=

=

=

=

 
 
  

o Proposition: Let { }n
A  be a sequence of measurable sets, then 

 ( ) ( )lim inf lim inf
n n n n
A A£   

 ( ) ( )lim sup lim sup
n n n n
A A³   

(The first statement can be thought of as a generalization of Fatou’s Lemma for 

probabilities). 

Proof of (i): Let us define 
m nmn

B A
³

=  . Then we know that 

1m m
BB +Í Í Í  . In other words, the sets Bm increase monotonically to  

lim inf
m n nm n m nm

B B A A
³

= = =    

Since the events are increasing, a simple form of monotone convergence gives us 

that ( ) ( )n
B B  . But we also have that 

( ) ( )m n
B A n m£ ³   
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because Bm is the intersection of all events from Am onwards, so its probability is 

less than or equal to the probability of any single event. Thus 

( ) ( )
( ) ( )
( ) ( )

inf

sup sup inf

lim inf

m n m n

m m m n m n

n n

B A

B A

B A

³

³

£

£

£

 
 
 

 

And given how we have defined B: 

( ) ( )lim inf lim inf
n n n n
A A£   

As required.  

 Borel-Cantelli Lemmas & Independence 

o Proposition (First Borel-Cantelli Lemma) Let { }n
A  be a sequence of 

measurable events such that ( )
n n

A <¥å  . Then ( ) i.o. 0
n

A = . In other 

words, ( )lim sup 0
n n
A = .1 We offer two proofs – the first is somewhat 

mechanical, the second is more intuitive. 
 

Proof (version 1): Consider that 

lim sup
n n m n m n
A A

³
=   

As such 

( ) ( )
( )

lim su

0

p
n n nn m

nn m
A

A A
³

³

£

£


å
 

  

As required.  
 

The second proof will require a lemma: 

Lemma (Fubini’s): If { }n
X  is a sequence of real-valued random variables with 

0
n

X ³ , then ( ) ( )n nn n
X X=å å   (which could be infinite). This is 

                                         
1 It might not be clear that the statements ( ) i.o. 0

n
A =  and ( )lim sup 0

n n
A =  are equivalent. To see 

this more clearly, note that the first statement is simply a shorthand for ( ):  i.o. 0
n

Aw wÎ W Î = . This 

is clearly identical, by definition, to ( )lim sup 0
n n
A = . 
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effectively a condition under which we can exchange a summation and an 

integration. 
 

Proof (version 2): Let 

1 if 

0
( )

otherwisen

n

An

A
X w

wìï Îï= í=
ïïî

  

Note that ( ) ( )n n
X A=  . We also have that 

( ) ( )
( )

n

n

n nn A

An

A =

=

< ¥
å

å å  
   

This means that the random variable 
nn Aå   must be less than or equal to 

infinity for every outcome in W ; in other words 

a.s.
nAn
<¥å   

This must mean that 1
nA
=  only finitely many times. Thus, An occurs only 

finitely many times.  

o Definition (independence): A sequence of random variables { }1
,,

n
X X  are 

independent if and only if 

( ) ( )1 1 1
, ,

n

n n i ii
X x X x X x

=
£ £ = £   

For all 
1

,,
n

x x Î  . 

Defininition (independence): A sequence of sets { }1
,,

n
A A  are said to be 

independent if and only if the sequence or random variables { }, ,
i nA A
   are 

independent. 

o Proposition (second Borrel-Cantelli Lemma): Let { }n
A  be a sequence of 

independent measurable events such that ( )n n
A = ¥å  , then ( ) i.o. 1

n
A = . 

Proof: We showed in a remark above that 

{ } { }, i.o , ev.
c

m

c
n n

c
nm n

A A

A
³

=

= 
 

Let us fix m > 1. Then using the inequality 1 xex -- £  
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( ) ( )
( )

( )
( )

1

exp ( )

exp ( )

0

c c

n nn m n m

nn m

nn m

nn m

A A

A

A

A

³ ³

³

³

³

=

= -

£ -

= -

=





å

 





 

But we have that 

( ) ( )
0

c c
n nm n m n mm

A A
³ ³

£

=
å     

As required.  

 Notions of convergence 

o Definition (convergence almost surely) 
n

X X  almost surely if 

{ }: ( ) ( ) 1
n

X Xw w wÎ W  =  

More generally, { }n
X  converges almost surely if 

( )lim sup lim inf 1
n n n n
X X= =  

This is the notion of convergence that most closely maps to convergence concepts 

in real analysis. 
 

Let us understand these two statements intuitively 

 The first statement tells us that for every single outcome in the sample 

space W , the sequence of random variables Xn tends to X. 

 The second statement is a shorthand for the statement that 

{ }( ): lim sup ( ) lim inf ( ) 1
n n n n
X Xw w w= =  

This is, again, simply the statement in real analysis that 

lim sup lim inf
n n n n
x x=  if and only if lim

n n
x  exists 

Thus, we require the limit to exist for every outcome w . 

o Example: Consider the sequence 1 [0,1]
n n

X U= . We claim that 0
n

X   almost 

surely. 

Proof: In this case, [0,1]W = . For any w  we might drawn, we will find 

1( ) 00
n n

X w£ £   

As required.   
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o Definition (convergence in probability): 
n p

X X  as n ¥  if, for all 

0e >  

( ) 0 as 
n

X X ne- >   ¥  

 

Let us understand this concept as compared to convergence almost surely. 

 In this case, we consider all the outcomes for which 
n

X  is far from X, and 

we require the probability of these outcomes to get smaller as n progresses. 

This, however, allows the possibility that for some outcomes w , 

( ) ( )
n

X Xw w  infinitely often, provided that the probability of these w  

is small and gets smaller. 

 In the case of almost sure convergence, we only allow the deviation to be 

large a finite number of times. For every outcome, we require 

( ) ( )
n

X Xw w . Perhaps this appears clearer if we write the condition for 

convergence almost surely as  

( )  i.o. 0
n

X X e- > =  

The difference between the two statements above really hinges on the novelty of 

the BC Lemmas. If An is the event that “Xn is far from X”, convergence in 

probability requires lim ( ) 0
n n

A¥ = , whereas convergence almost surely 

requires that (  i.o.) 0
n

A =  – which would, for example, be satisfied if 

( )
n n

A < ¥å  . 

o Another interesting way to view the difference between convergence almost surely 

and in probability is in terms of experiments. Imagine carrying out an 

“experiment” by generating random variables 
1 2
, ,X X . Each such experiment 

corresponds to a different outcome w Î W . 

 If 
n

X X  almost surely, then it is certain that in every experiment we 

might carry out, the values 
1 2
( ), ( ),X Xw w   will tend to ( )X w . 

 If 
n p

X X , then it is possible that in some experiments (for a select 

subset of W ), 
1 2
( ), ( ),X Xw w   will not tend to ( )X w . The probability of 
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this happening decreases with the number of X generated, but it is still 

possible that in certain experiments, it will happen. 

o Example: Let { }1
n n

Un
X

£
=  , where the Un are IID U[0, 1] random variables. Let 

us fix (0,1)e Î , and consider the definition 

( ) ( )
( )1

0

1

0

n n

n n

X X

U

n

e e- > = >

= £

=



 


 

This proves the Xn do indeed converge to 0 in probability. Consider, however, 

that 

( ) 1
n n n n

X e = = ¥>å å  

But since our Xn are independent, we know by the second BC Lemma that 

{ },  i.o.
n

X e>  almost surely. So Xn cannot be converging to 0 almost surely. 

Note, on the other hand, that if we replaced our 1/n by 1/n2, we would find 

(using the first Borel-Cantelli Lemma) that Xn does indeed converge to 0 almost 

surely.  

o Claim:  a.s.  as  
n n p

XX X X n   ¥ . As our example shows, however, 

the converse is false. 

Proof: Recall that convergence almost surely can be written as 

( )  i.o. 0
n

X X e- > =
 

or in other words 

{ }( )lim sup 0
n n

X X e- > =
 

We have, however, that l lim supim inf
n nn n

A AÍ . As such 

{ }( )
( )

lim inf 0

 e.v. 0

n n

n

X X

X X

e

e

- > =

- > =




 

This naturally implies that eventually the probability of large deviations falls to 0 

– this is the definition of convergence in probability.  
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o Remark: It is interesting to note that if 
n p

X X , it is possible to find a 

subsequence  a.s.
kn

X X , 1,2,k = . This solidifies our intuition that 

convergence in probability differs from convergence almost surely only as a result 

of a few “freak outcomes”. 

Proof: Assume we have 
kn

X . Pick nk + 1 to be the smallest n such that 

( )
1

1 1

2k
kn k

X X
+
- ³ £  

(This is always possible by the definition of convergence in probability). The 

convergence of 
kn

X  almost surely follows by the BC Lemma.  

o Example: Take [0,1]W =  and = uniform distribution. We then define random 

variables X1 and X2 as follows: 

1

1
2

1
( )

0 otherwis

[0, )

e
X

w
w

ì
=

Îïïíïïî
  

1

2
2

0
( )

1 otherwis

[0, )

e
X

w
w

ì
=

Îïïíïïî
 

Graphically: 

  

Similarly, we define X3, X4 and X5 to be random variables divided into three 

parts: 

           

We continue this pattern to form a pyramid of random variables. 
 

w
1

0 2
3

1
3

5
( )X w

w
1

0 2
3

1
3

4
( )X w

1

w

3
( )X w

1
0 2

3

1
3

1

w

2
( )X w

11
2

0
w

1
( )X w

11
2

0
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Now, consider (0,1)e Î  – since 
n

X  is equal to 0 or 1, saying 
n

X e>  is the same 

as saying 1
n

X = . Now, consider that ( ) ( ) 1
1 2 2

1 1X X= = = =  . Similarly, for 

random variables divided into three parts, the probability is 1
3
, etc… As such 

( ) 0 as 
n

X ne>   ¥  

And so 0
n p

X  . 

 

However, if we fix any [0,1]w Î , ( ) 1
n

X w =  infinitely often (because every set of 

random variables will involve at least one that is equal to 1 at that w ). Thus, Xn 

does not tend to 0 almost surely. 

o Definition (convergence in expectation) – also called L1 convergence. We 

say that 
1n L

X X  as n ¥  if 

0 as 
n

X X n-   ¥  

Similarly, 
pn L

X X  if 

0 as 
p

n
X X n-   ¥  

o Claim: 
1n L

X X  implies that 
n

X X   and ( ) ( )
n

X X  . 

Proof: For the first part, consider that 

nn

n n

n
X XX X

X X X X

X X X £ - +

 - £

= +

-

-
 

Taking expectations yields the result. For the second part, note that 

( )( ) ( ) ( )
n n n

X X X X X X- = - £ -     

Where the last step follows by Jensen’s Inequality. Taking limits yields the 

answer required.  

o Theorem (Markov’s Inequality): Let X > 0 have finite expectation. Then for 

all a > 0 

( ) ( )X
X a

a
> £

  

Proof: 
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( ) ( )
( )
( )

( ) , ,

,

X X X a X X a

X X a

a X a

= > + £

³ >

³ >

  



 

As required.  

o Claim: If 
1n L

X X  then 
n p

X X . 

Proof: Fix an 0e >  and use Markov’s Inequality 

( ) ( )
0

n

n

X X
X X e

e

-
- > £ 


  

As required.  

o Example: Consider { }1
n

n U
X n

£
=  , where U is U[0,1]. Clearly, 0 a.s.

n
X   (Note 

that this does not hold true for 0w = . However, this set has measure 0, and so 

the convergence is still almost sure). However, it is clear that 

( ) ( )1 1
n n

X n U= £ =  . Clearly, therefore, L1 convergence and almost-sure 

convergence are not compatible. (This illustrates an interesting example where 

taking limits inside and outside expectations gives a different result. Indeed, 

( )( )1 im lim 0l
n nn n

X X¹ ==   .) 

o Example: Let Xn be a sequence of IID random variables with exponential 

distribution with parameter 1. We will prove that 

lim sup 1 a.s.
log

n
n

X

n
=  

Intuitively, this implies that if we simulate a certain number of exponentially 

distributed random variables and plot them against their index, and then plot 

the curve log n, an infinite number of these points will lie on the curve! This is 

quite shocking, since one might expect very few very large values! 

Proof: First 0e > . Consider 

( ) (1 ) log

1

(1 )log

1

n
n

X n e

n

e

e

e - +

+

> + =

=


 

This means that 

( )(1 )log
nn

X ne> + <¥å   
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So by BC-1, 

( )(1 )log ,  i.o. 0
n

X ne> + =  

As such, 

(1 )log   ev.  almost surely
n

X ne£ +  

and therefore 

lim sup 1
log

n
n

X

n
e£ +  

By the same reasoning 

( )
( )

1

1
(1 )log

(1 )log

n

nn

X n
n

X n

e
e

e
-

> - =

 > - = ¥å



 

So by BC-2 and the independence of the Xn, 

( )(1 )log ,  i.o. 1

lim sup 1    a.s.
log

n

n
n

X n

X

n

e

e

> - =

 > -


 

The two boxed results together imply our result.  

Note: This only applies to the lim sup – to say that the actual sequence tends to 

1 is nonsensical, because most of the Xn will indeed be very small! 

LECTURE 2 – 26th January 2010 

 Interchange arguments 

o Example: In our last lecture, we considered the sequence of random variables

{ }1
n

n U
X n

£
=  . We argued that 0

n
X   almost surely (as n ¥ ). We showed, 

however, that ( ) 1
n

X =  for all n. We might wonder whether it is generally true 

that 

( ) ( )
?

lim lim ( )
n n n n
X X X= =    

Clearly, this is not the case here. It looks like certain conditions need to be 

satisfied.  
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o Theorem (BDD – Bounded Convergence): Let { }n
X  be a sequence of 

random variables such that 
n

X K£ £¥  (where K is a deterministic constant) 

and 
n

X X  almost surely, then ( ) ( )
n

X X  . (Clearly, in the example 

above, the n that sits outside the indicator prevents us from bounding Xn). 

Proof: For any given 0e > , let 

{ }: ( ) ( )
nn

X XA w w ew= Î W - <  

Let 
n n

B A= W- . Because  a.s.
n

X X , ( ) 0
n

B  . Thus 


( )

Jensen's

( ) ( )   

(d ) (d )

( ) 2 ( )

0

n n

n n

n nA B

n n

X X X X

X X X X

A K B

w w

e

- £ -

= - + -

£ +


ò ò
  

 
 

 

In the last line, we used the fact that for all outcomes in An, the absolute 

difference is less than e  (by definition) and that for all outcomes in Bn, the 

absolute difference is less than 2K (because lim
n nn

K XX X K£  = £ .  

Remark: It is clear that this theorem still holds if Xn only converges in 

probability to X rather than almost surely, because all that is required is for the 

probability of rogue events to fall to 0. The fact that X K£  can be deduced 

from the fact there is a subsequence 
kn

X  that converges to X almost surely (see 

above). 

o Lemma (Fatou): If { }n
X  is a sequence of non-negative random variables, then  

( )lim inf lim inf ( )
n n n n
X X£   

(Note: there is no converse for lim sup). 

Proof: Let inf
m nmn

Y X³=  and lim lim inf
n n n n

Y Y X= = . Note that: 

 
m

Y Y  a.s. 

 ( ) (infi ( )nf )
m n n m mn n

X X Y³ ³³ =   . To see why, consider the Xn that has 

lowest expectation – call it 
min

X . The LHS then has value 

min
( ) (dX w w)ò  . The RHS, however, has value inf ) (d(

n n
X w w)ò  . This 

is clearly smaller or equal to the LHS. 
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Now, pick some k 

( )
( )

lili mm in

lim min[

f

, ]
n m

m

n

n

Y

Y

X

k
¥

¥

³

³


  

The absolute value of the variable of which we are taking an expectation is now 

bounded by k, because the Xn are positive, and so Ym is positive. So we can apply 

bounded convergence: 

( )
( )
lim min[ , ]

min[

lim in

, ]

f
n mn

Y

k

X k

Y
¥³

=


  

As k  ¥ , the last line tends to ( ) (lim inf )
n n

Y X=  .  

o Theorem (DOM – Dominated Convergence): Let { }n
X  be a sequence of 

random variables such that 
n

X Y£  with ( )Y <¥  and 
n

X X  almost 

surely, then ( ) ( )
n

X X  . 

Proof: Since 
n

X Y£ , we have that 0
n

Y X+ ³  and 0
n

Y X- ³ . Applying 

Fatou’s Lemma to both variables, we obtain 

( ) ( ) ( ) ( )ll iim min nfi f
n n n n

Y X Y X Y X Y X+ ³ + - ³ -     

Since Y has finite expectation, we can subtract ( )Y  from both sides above, and 

obtain 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

lim inf

lim su

lim inf

lim inf p
n n nn

n nn n

X X X X

X X X X

³ - ³ -

³ £

   
     

Together, the last two lines imply that lim ( ) ( )
nn

X X  .  

o Theorem (MON – Monotone Convergence): Let { }n
X  be a sequence of 

random variables such that 
1 2

0 X X£ £ £  almost surely, then 

 
n

X X  (possibly ¥) almost surely. 

 ( ) ( )
n

X X   (possibly ¥). 

Proof: Since Xn > 0, we can apply Fatou’s Lemma, to get 

( ) (limlim inf inf ) ( )
nn n

X X X³ =    

However, the fact that Xn < X also gives ( ) ( ) lim inf ( ) ( )
n n n

X X X X£  £    . 

These two statements together imply that lim ( ) ( )
nn

X X  .  
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o Proposition (Frobini I): Let { }n
X  be a sequence of random variables with 

0
n

X ³  for all n, then 

( ) ( )
n nn n

X X=å å   

Proof: Define 

1 1
(possibly )

n

n n mm m
S X S X

¥

= =
= = ¥å å  

(The last step follows because the Xn are non-negative, which means the sequence 

{ }n
S  is non-decreasing almost surely – there is no outcome in the probability 

space in which adding an extra term to the sum decreases it). By monotone 

convergence, we have that ( ) ( )
n

S S  . However, 

( ) ( )
Finite 

1 1 1
    ( ) ( )

n

n n

n n n nm m m
S X X X

¥

= = =
= =å å å


     

And 

( )1
( )

mm
S X

¥

=
= å   

Combining these two results yields 

( )1 1
( )

n mm m
X X

¥ ¥

= =
=å å   

As required.  

o Proposition (Frobini II): Let { }n
X  be a sequence of random variables with 

( )nn
X <¥å . Then 

( ) ( )
n nn n

X X=å å   

Proof: As above, set 
1

n

n mm
S X

=
= å . By the Triangle inequality, we have 

1 1 1
a.s.

Y

n n

m mm mn mm
X X XS

¥

= = =
£ £= <¥å å å


 

(The last inequality follows because the statement of the Theorem includes the 

fact that the expectation of the infinite sum is smaller than infinity. If the sum 

was equal to infinity of a set of non-zero measure, the expectation would blow 

up. Thus, the sum must be is less than or equal to infinity almost surely.) 
 

Now, note that 
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1

1

1

1 1

0 a.s. as 

n

n m m mm m m

nm

mm n

n

X

S X X X

X

n

¥ ¥

= =

+

=

=

+

=

¥

¥

- = -

=

£
  ¥

å å å
å
å

 

(The last line follows from the fact the sum is finite almost surely. Thus, if we 

continually whittle away at the sum from below, it will eventually shrink to 0 

almost surely). 
 

The above implies that 
1n mm

S X
¥

=
 å  almost surely. We can now apply 

dominated convergence. First note that 

( )
Finite 

1 1
( )     ( )

n
n n

m m nm m
X X S

= =
= =å å


    

Now take limits of both sides 

1 1
lim ( ) ( ) lim ( )

n

n m m n nm m
X X S

¥

= =
= =å å    

By dominated convergence, we have 

( )1
lim ( ) (lim )

n n n n mm
S S X

¥

=
= = å    

Combining the last two equations, we do indeed find that 

( )1 1
( )

m mm m
X X

¥ ¥

= =
=å å   

As required.  

o We have, so far, looked at sufficient conditions for interchange. Is there a 

“common thread” that runs through these conditions? 

o Definition (Uniform Integrability): A sequence of random variables { }n
X  is 

said to be uniformly integrable (u.i.) if for all 0e > , there exists a ( )K e <¥  

such that 

( ) { }( )( )
sup : ( ) sup

n
n n n n n X K

X X K X
e

e e
>

> º £    

Note that the supremum implies that the K we find must work uniformly for the 

entire sequence – in other words, for a given e , there must be a single ( )K e  

which makes the tail expectation small for every n. Requiring this to be true for a 
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single Xn is actually trivial, provided the expectation is finite, because a finite 

expectation implies that the tail eventually “dies out”. 

o Proposition: Let { }n
X  be a sequence of random variables and suppose 

n
X X  almost surely 

 If { }n
X  are uniformly integrable, then ( ) ( )

n
X X  . In fact, a stronger 

result applies – that ( ) 0
n

X X-  . 

 If Xn > 0 for all n and ( ) ( )
n

X X <¥  , then { }n
X  are uniformly 

integrable. 

In the absence of the non-negativity requirement in the second statement, this 

would be an “if and only if” statement. We have almost identified the “bare 

minimum” condition for interchange. 

Proof: 

 Part 1: First, let us verify that X is integrable 

( )


( ) ( )( )


( )

Fatou

 are u.i

lim inf

  lim inf

sup

sup ; ;

  sup

n

n n

n n

n n

n n n n n

X

n

X X

X

X

X X a X X a

a e

=

£

£

= £ + >

£ +
<¥

 



 

 

Now, let 
n n

Y X X= - . We then have 0
n n

Y X X£ £ + . Hence, { }n
Y  

is also uniformly integrable (since { }n
X  is uniformly integrable, and X is 

integrable). Write 

( ) ( )
{ }( )

( ) ; ;

n

n n n n n

n Y a

Y Y Y a Y Y a

Ye
£

= > + £

£ +

  
   

Now, note that { }n
n Y a

Y a
£

£ , so by bounded convergence – and since 

0 a.s.
n

Y   because  a.s.
n

X X  – we have that { }( ) 0
n

n Y a
Y

£
  . Thus, 

( ) 0
n

Y  , as required. 
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 Part 2: Given a > 1, define 

( ) (line connec

[0, 1]

[ 1ting 1 to 0) ,

0

]
a

x x

f x a x

x a

a

a a

ìïï Î
ïï= -íïï >ïïî

-
Î -  

Clearly, fa is continuous, and 

{ } { }1
( )

ax a x a
f x xx

£ - £
£ £   

Now 

{ }( ) ( ) { }( )
( ) ( )

n n
n n nX a X a

n a n

X X X

X f X

> £
= -

é ù£ - ê úë û

    

 
 

Now, fa is clearly bounded, and 
n

X X . Thus, applying bounded 

convergence, ( )na
f Xé ù

ê úë û . Furthermore, by the statement of the theorem, 

we have ( ) ( )n
X X   (since the Xn are positive and ( ) ( )

n
X X  ). 

Thus, the RHS above can be made arbitrary close to the difference 

between these two expectations. In other words, there exists an n0 such 

that for all n > n0, 

{ }( ) ( ) ( )
( ) { }( )1

n
n n aX a

n X a

X X f X

X X

e

e

>

£ -

é ù£ - +ê úë û

£ - +

   

  
 

o Proposition (Sufficient conditions for u.i.) 

 If sup
nn

p
X <¥  for some p > 1, then { }n

X  is uniformly integrable. 

 If 
nn

X Y£  and { }n
Y  is uniformly integrable, then { }n

X  is uniformly 

integrable. 

 If { }n
X  and { }n

Y  are uniformly integrable, then { }n n
X Y+  is uniformly 

integrable. 

Proof (part 1): We will prove the first part of the statement above. To do 

that, however, we will need to use Holder’s Inequality. 
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Proposition (Holder’s Inequality): Let X and Y be random variables 

such that 
p

X <¥  and 
q

Y <¥ . Pick p, q > 1 such that

1 1 1p q- -+ = . Then 

( ) ( )1/ 1/

| | | |
p q

p qXY X Y£    

When p = q = 2, this inequality is none other than the Cauchy-Schwartz 

inequality 

2 2( ) ( ) ( )XY X Y£    

Proof: If X = 0 or Y = 0 a.s., the inequality holds trivially. As such, 

suppose ( )1/| | 0
p

px X= >  and ( )1/| | 0
q

qy Y= > . Suppose we are 

able to show that, for every point w  in the sample space, 

( ) ( )1( 1( ) )
p q

p p

X Y

p

X

xxy q y

Y w ww w
£ +  

Then, taking expectations and rearranging, this becomes Holder’s 

Inequality. To show this statement is true, we write ( ) /a X xw=  and 

( ) /b Y yw= . The statement then becomes 

p qa a

p
a

q
b £ +  

With a and b non-negative. We can therefore write /s pa e=  and /t qb e= . 

The expression then follows trivially from the convexity of the 

exponential function: 

exp
s ts t

p q

e e

p q

æ ö÷ç ÷+ç ÷ç ÷ç
+

è ø
£  

We have therefore proved Holder’s Inequality.  
 

We will also require the following result 

Lemma: If p > 1, then 
p q

X X< ¥  < ¥   for 1 < q < p. 

Proof: 
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; 1 ; 1

1 ; 1

q q q

p

X X X X X

X X

æ ö æ ö÷ ÷ç ç= < + ³÷ ÷ç ç÷ ÷è ø è ø
æ ö÷ç£ + ³ ÷ç ÷è ø

£¥

  

  

As required.  
 

Now, fix K <¥  and n > 1, and choose p and q such that 1 1 1p q- -+ = . We 

then use Holder’s Inequality to obtain 

( ) { }( )
{ }( )

1/
1/

;
n

n

n n n X K

q
p q

p

n X K

X X K X

X

>

>

> =

æ öæ ö ÷ç÷ ÷ç ç£ ÷ ÷ç ÷ ç ÷è ø ÷çè ø

  

  
 

Taking a supremum 

( ) ( )
1/

1/
; sup ( )

p
p q

n n n n n
X X K X X K

æ ö÷ç> £ >÷ç ÷è ø
    

By the assumption in the theorem, the first expression is finite. Let its value be 

C: 

( ) ( )1/; ( )
q

n n n
X X K C X K> £ >   

Using Markov’s Inequality 

( )
1/

1/

;

sup

q

n

n n

q

n

n

X
X X K

K

X

K

æ ö÷ç ÷ç ÷> £ ç ÷ç ÷÷çè ø
æ ö÷ç ÷ç ÷£ ç ÷ç ÷÷çè ø





 

Now, it is clear that the first moment of Xn has finite expectation because we 

already know a higher moment has finite expectation: 

( ) 1/
;

n n q

CC
X X K

K

¢
> £  

The RHS now no longer depends on n, so we can write 

( ) 1/
sup ;

n n n q

CC
X X K

K

¢
> £  

For any e , provided we choose ( / )qK CC e¢³ , our condition for uniform 

integrability is satisfied.  
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Proof (part 1 – alternative): We propose an alternative, somewhat simpler 

proof to part 1: 

( )

( )

1

1

1

; ;

1
;

p

n

n n n n

n np

p

X
X X a X X a

a

X X a
a
K

a

-

-

-

æ öì ü ÷ç ï ï ÷ç ï ï ÷ï ïç ÷> £ >í ýç ÷ç ÷ï ï ÷ç ï ï ÷ç ï ïî þè ø

= >

=

 

  

Setting 1/ pa K a -³  gives the required result.  

 Kolmogorov’s 3-Series Theorem 

o Let { }n
X  be a sequence of random variables, and let 

1

n

n mm
S X

=
= å  

We now consider the question of when Sn converges. What condition is needed on 

the distribution of the X for this to happen? Clearly, if the Xn are IID, this will 

not be the case, since every additional variable in the sum add something to the 

sum – IID variables are either “dead at the start” or “never die out”. 

o Theorem (Kolmogorov 3-series): Let { }n
X  be a sequence of independent 

random variables. Then 
nn

Xå  converges if and only if for some (and therefore 

every) K > 0, the following conditions hold: 

 ( )n n
X K ¥> <å   (clearly, for example, if the Xn are IID without 

bounded support, we’ll never be able to satisfy this). This is a statement 

that the “mass in the tails” must decrease with n. 

 ( );
n n n

X X K£ <¥å   

 ( )ar ;
n nn

X X K£ <¥å   

Note that there are no issues of existence of the expected value and the variance 

in the last two points because these are taken over a finite range – namely on 

( , )
n

KX KÎ - . 

Proof: There is a simple proof of this result which relies on martingales. We will 

cover it later in this course. 
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o Proposition (2nd version of 3-series theorem): Let { }n
X  be independent 

random variables with ( ) 0
n

X =  for all n. If ar( )
nn

X < ¥å  , then 

1

n

n mm
S X

=
= å  converges almost surely. 

Proof: Again, using martingale theory. 

o Example: Set /
n n

X Y n= , where the Yn are IID exponential random variables 

with mean 1. Does the sum 
n nn

S X= å  converge? The deterministic series 1/n 

does not converge, and we wonder whether the exponential variables will be close 

enough to 0 often enough to “fix” that. In light of the result we derived in the 

previous lecture (that draws from an exponential will be arbitrarily large 

infinitely often) one might expect this series not to converge. Let us check the 

conditions formally. 

 First condition: 

( ) ( )
( )

nY

n n

n
nK

X K K

Y nK

e-

> = >

= >

=

 
  

This does indeed sum to a finite number 

( )n n
X K ¥> <å 

 

The first condition is therefore met.
 

 Second condition: 

( ) ( )
( )1

; ;

;

nY

n n nn

n nn

X X K Y nK

Y Y nK

£ = £

= £

 


 

But we note that 

( )1 1 0
;  d 0 0

s
yY Y s ye y s-£ = > " >ò  

It is clear, therefore, that condition 2 is violated, because the sum of 1/n 

diverges. So, as we expected, Sn does not converge almost surely.  

o Example: Set Xn = Yn/n, where the Yn are IID random variables with 

( 1) 1 ( 1)
n n

Y Y p= = - =- =   
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Once again, we wonder whether 
1

n

n mm
S X

=
= å  converges. The intuition here is 

that the deterministic series ( 1) /n

n
n-å  does converge. Our version is this 

sum, but instead of deterministically flipping between positive and negative, we 

randomly switch between positive and negative. We wonder whether this will 

“spoil” the convergence. We fix K > 0 (say K = 1) and test the three conditions: 

 First condition 

( )1 0
n

X > =
 

So clearly, the sum does converge.
 

 Second condition 

( ) ( )1
; 1 ;

1
( )

2 1

n n n n

n

X X Y Y n
n

Y
n
p

n

£ = £

=

-
=

 

  

We know, however, that k
nå  diverges, so the infinite sum of these 

expectations only converges if p = ½, in which case the numerator is 0. 

We therefore restrict our attention to that case. 

 Third condition (assuming p = ½) 

( ) ( )2

2

2

2

1
ar ; 1 ar |

1
ar( )

( ) 0

n n n n

n

X X Y Y n
n

Y
n

Y

n

£ = £

=

-
=

 




 

The infinite sum of the variances is therefore finite. 

As such, our sum does converge.  

o Example: Set /
n n

X Y n= , where Yn are IID random variables with 

probability ½ of being 1 and probably ½ of being –1. Again, the deterministic 

sum ( 1) /n

n
n-å  converges, and we wonder whether adding randomness will 

make a difference. Since, in this case, ( ) 0
n

X = , we can simply apply the second 

form of the 3-series theorem: 
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( ) ( )
2

1
ar ; 1 ar ;

( )

n n n n
X X X Y n

n
X

n

£ = £

=

 
  

The infinite sum of these variances clearly diverges, and so Sn does not converge. 

It is interesting to note how sensitive this result is to scaling – in the 1/n case, 

the convergence in the deterministic case carries over to the random case, 

whereas in the 1 / n  case, it does not.  

 The Strong Law of Large numbers 

o Theorem (SLLN): Let { }n
X  be IID with 

1
X <¥ , then 

1 1
( ) a.s.

1 n

kkn
XX

=
å 

 

Note: there is a simpler proof of this theorem that assumes the fourth moment of 

X1 is bounded. We prove the more general theorem that does not require this 

stipulation.
 

Proof: Let us fix n. 

 Step 1 – Truncation: Let 

0 otherwise
n n

n

X
Y

nXìïïï= í
£

ïïïî
 

In a sense, { }n
Y  is a “truncated” form of { }n

X . We will first prove the 

result for the truncated form, and later show that the result then carries 

over to the non-truncated form. 

 Step 2: Write Yn as 

( ) ( )

nw

nn n n
YY Y Yé ù +ê úë= - û


   

Now, note that since Yn only contains values of 
n

X  that are less than or 

equal to n 

( )
{ }( )

( ) ;

n

n n n

n X n

Y X X n

X
£

= £

=
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We will now attempt to evaluate this expectation using dominated 

convergence. Note that 

1. { }1
1 1X n

XX
£

£  

2. Since 
1

X  has finite mean, it is the case that 

{ } { }1 1
1 1 1

a.s.
X n X

X XX
£ <¥

 =   

(1) justifies using dominated convergence, and (2) gives us the limit. We 

get 

{ }( )
1

1 1

1

( )

( ) ( )

X n

n

X X

Y X

£




  
 

 

 Step 3: We have shown that as n ¥ , Yn can be written as 

1
( )

n n
Y w X= +  , or in other words that 

1 1 1
( )

1 1n n

k kk k
Y w X

n n= =
 +å å   

The obvious next step is to show that the first term above tends to 0 

almost surely. To do this, we will need two lemmas. 

Lemma (Cesaro Sum Property): Let { }n
a  be a real valued 

sequence with 
n

a a¥ . Then 

1

1
as 

n

kk
a a n

n ¥=
  ¥å

 

Proof: Let 0e > , and choose an N such that 

 whenever 
k

Na a ke¥ - ³>  

Then 

1 1

1
l

1
im in lim in (

0

)ff
n N

nn k kk k

n N
a a a

nn n
a

e

e



¥

¥ ¥= =

ì üï ïï ï³ í ýï ïï

-
+ -

ïî þ
³ + -

å å  

By a similar argument, lim sup a¥£ . The result follows.  
 

Lemma (Kronecker’s Lemma): Let { }n
a  be a real valued 

sequence. Then 
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1 1

1
 converges 0k

k

n

kk
a

n

a

k

¥

= =

æ ö÷ç ÷
æ ö÷ç ÷ ç ÷ç ÷ç

ç ÷ç ÷÷çè ø è ø
åå  

Proof: Let ka

n knk
u

£
= å . By the assumption in our proof, 

lim
n n

u u¥ =  exists. Then 

1
n

n n

a
u u

n-
- =  

We then have 

1 11 1 1
( )

n n n

k k k n kk k k
a k u u nu u- -= = =

= - = -å å å  

As such 

11 1

1 1n n

k n kk k
a u u

n n -= =
= -å å  

The first term clearly tends to u¥
 as n ¥ . By the Cesaro Sum 

Property, so does the second term. Thus 

1

1
0

n

kk
a u u

n ¥ ¥=
 - =å  

As required.  
 

Using these two lemmas, our (rough) strategy will be as follows: 

 Step 3a: Show that 
1

k
n w

kk=å  converges almost surely, using the 

Kolmogorov 3-series theorem. 

 Step 3b: Use Kronecker’s Lemma to deduce that for every 

outcome in the sample space for which 
1

k
n w

kk=å  converges, 

1
1

n

kn k
w

=å  converges to 0. 

 Step 3c: Note that since 
1

k
n w

kk=å  converges almost surely, 

1
1

n

kn k
w

=å  converges to 0 almost surely. 

Step 3a: Note that since ( )
k k k

w Y Y= - , we can conclude that 

( ) 0
k

w = . Furthermore, the 
k

w  are independent of each other (because 

they are build up from the Yk, which are built up from the Xk, which are 

independent). We can therefore use the second form of the Kolmogorov 3-

series Theorem to show that 
1

k
n w

kk=å  converges almost surely. (Note that 
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some steps in the exposition below require some results about moments of 

random variable which we will prove in a homework – these are indicated 

by a *). 

( ) ( )

( )

( )

( )

( )

2

2

2 2

2

2

2

2 0

2 0

12 0

1
ar ar ( )

1
ar

( ) ( )

( )

1
* 2  d

1
2  d

1
2  d

kw

k kk

k

k k

k

k

k

k

k

Y Y
k

Y
k

Y Y

k
Y

k

y Y y y
k

y X y y
k

y X y y
k

¥

= -

=

-
=

£

= >

= >

= >

ò

ò

ò

  


 









 

As such 

( ) ( )1 11 2 0

1
ar 2  dk

kw

k kk
y X y y

k

¥ ¥

= =
£ >òå å   

By Frobini’s Lemma, we can interchange the summation and integration, 

since the integrands are all positive 

( ) { } ( )

( )
11 201

1 20

1
ar 2  d

1
2  d

kw

k y kk

k

k

y

y X y y
k

y X y y
k

¥ ¥

£=

¥ ¥

ê ú=ê úë û

¥

=
£ >

£ >

åò

åò

å   


 

Note, however, that the sum in this expression above can – in theory – be 

bounded by some integral (for example, 1/(k – 1)2 works well). Thus, we 

can write 

( ) ( )

( )

1
10

2

3 10

1

1

3

ar 2

*

kw

k k

C
y X y

C y

C X y

C X

¥

¥

¥

=
£ >

+

£ >

=
<¥

å ò

ò

 




 

So the sum does indeed converge. 

 Step 3b & 3c: Consider the following two events 
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{ }( )

1

1

:

1
: ( ) 0

kw

kk

kk

A

B w
n

ww

w w

¥

=

¥

=

= <¥

ì üï ïï ï= í ýï ïï ïî þ

å

å
 

Now, by Kronecker’s Lemma, A BÍ . But by Step 3a, ( ) 1A = , since A 

occurs almost surely. Thus, ( ) 1B =  and 

1

1
0 a.s.

kk
w

n

¥

=
å  

Thus, from Step 2, 

1 1
( ) a.s.

1 n

kkn
XY

=
å   

 Step 4: We have now proved the SLLN for the truncated series { }n
Y . All 

that remains to be shown is that the result also applies to the full series 

{ }n
X . Now, consider that 

( ) ( )n n n
X Y X n¹ = >   

But note that 

( ) ( )1 1
( )

nn n
X n X n X> > £ <¥=å å    

So by the first BC Lemma, for large enough n 
n

X n£  almost surely. 

Thus, for large enough n, Xn = Yn almost surely. Now, consider that, by 

the triangle inequality and the Cesaro sum property 

1 1
1 11

1
(( ) ( ) ( )

lim ( ) (

)

)

n n

k kn nk k

n

k kn k

n n n

X X Y

X Y

Y ww w

w

w

w
= = =

£ -

 -

- åå å
 

But we have already shown that lim ( ) ( ) 0
n n n

X Yw w- =  almost surely. 

As such 

1 1
1 1

lim ( ) ( ) a.s.( ) ( )
n n

k kn nk n nk n
X Y X Yw ww w

= =
 --å å  

Thus, the SLLN holds for the original sequence Xn.  

o Example: Let { }n
X  be an IID sequence of random variables with ( ) 0

n
X =  

and ( )2 2
n

X s= <¥ . Let 
1

n

n nk
S X

=
= å . We know, from the SLLN, that 

0 a.sn
S

n
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We might wonder, however, whether this still holds true if, instead of dividing by 

n, we divide by some quantity an, where 
n

a ¥ , but possibly slower than n. 

We might wonder what the smallest such an is that still makes the sum converge. 
 

Let us consider, for example, ( )
1
2log

n
a n n

e+
= . log n grows extremely slowly, so 

this is really very close to a n  growth. Consider that 

( )
1
2

2

ar
log

n

n

X

a n n
e

s
+

æ ö÷ç ÷ç =÷ç ÷÷çè ø
  

And this implies that 

( )ar n

n

X

an
<¥å   

Thus, by the Kolmogorov 3-series theorem, n

n

X

anå  converges almost surely, and 

by Kronecker’s Lemma, this means that / 0
n n

S a  . Thus, we see that even 

with such a small-growing an, an almost-sure result still holds. 
 

However, it is interesting to note that if we take 
n

a n=  (slightly smaller), then 

no almost sure result holds anymore. In fact, we will show in the next lecture 

that the best we can say is / (0,1)
n

S n Ns . These arguments are clearly 

extremely sensitive to scaling.  

LECTURE 3 – 2nd February 2011 

 Weak convergence & the Central Limit Theorem 

o Definition (Weak convergence): A sequence of random variables { }n
X  is 

said to converge weakly to a random variable X, denoted 
n

X X  as n ¥ , if 

and only if 

( ) ( )
n

f X f Xé ù é ùê ú ê úë û ë û   

For all bounded continuous functions f. 

Comments: 

 This is clearly a very difficult definition to use, because there are “too 

many” bounded continuous function. We will see later, however, that it 
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suffices to consider a smaller set of functions that is a “basis” for  these 

functions. 

 If 
n

X X  almost surely, then ( ) ( )
n

f X f X , because f is continuous, 

and ( ) ( )
n

f X f Xé ù é ùê ú ê úë û ë û  , by bounded convergence (since the functions 

are bounded). Thus, almost sure convergence implies weak convergence. 

 Each member of { }n
X  as well as X need not even live on the same 

probability space. Indeed, the theorem only mentions convergence of 

expectations, which are effectively integrals 

( ) d ( ) ( ) d ( )
n

f x F x f x F xò ò  

Nothing prevents the integrals from being taken over different spaces. 

Note that this is radically different to the context of almost sure 

convergence, which fixes an w  in the probability space and requires 

convergence. This is not possible here, because the variables might not 

even live in the same probability space. 

o Definition (Weak convergence): A sequence of real valued random variables 

{ }n
X  converges weakly to X if and only if 

( ) ( )
n

F x F x  

for all continuity points of F, where ~
n n

X F  and ~X F . (This definition makes 

it even clearly that the variables can live in different spaces). 

o  Example: Take 
1 2
, ,X X  IID, with 

1
( )X m=  and 2

1
ar( )X s= , then 

1 (0,1)
( )

ii N
X

n

m
s

¥

= 
-å

 

This is none other than the central limit theorem. (Note the slight abuse of 

notation which will continue throughout the course – when we say F , we 

mean X  where ~X F ). We will prove this late in this lecture.  

o Example (Birthday Problem): Let 
1 2
, ,X X  be IID uniformly distributed on 

{ }1, ,n  and independent of each other (if the Xn were birthdays, we would have 

n = 365). Now, fix k < n (the number of people amongst whom we are looking 

for a match), and let 
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{ }min :  for some 
n i j

Y i X X j i= = <  

This is effectively the smallest i for which Xi matches an earlier X. We are now 

interested in the quantity 

( ) ( )No match in group of  people

1 2 1
1

n
k Y k

n n n k

n n n

= >
- - - +

= ⋅ ⋅ ⋅ ⋅

 
 

We could plug in numbers of n and k into the expression above and calculate the 

product. This is somewhat inconvenient – let’s try to use weak convergence 

arguments to get an approximation to this instead. Let us fix x > 0 

( )
( )
( )

1

2

1

2
1

n
n

x n n i
ni

x n i
ni

Y
x Y x n

n
ê ú
ê ú - +ë û
=
ê ú
ê ú -ë û
=

æ ö÷ç ÷ç > = >÷ç ÷÷çè ø

=

= -




 

 

Let us take logarithms of both sides 

( )1
2

log log 1
x nn i

ni

Y
x

n

ê ú
ê ú -ë û
=

æ ö÷ç ÷ç > = -÷ç ÷÷çè ø
å  

We now need a quick definition 

Definition: ( ) ~ ( )f x g x  as x ¥ if ( )

( )
lim 1f x

x g x¥ = . Similarly, ~
n n

a b  if 

lim 1n

n

a

n b¥ = . Note that this does not necessarily imply either 

function/series converges. 

Now, note that log(1 ) ~x x- -  as 0x  . As such, ( )log 1 ~y y

n n
- - . Therefore 

2

2

2

2

1
log ~

1
( 1)

1 1
~

2
/ 2

x nn

i

x n

i

Y i
x

nn

i
n

x n
n
x

ê ú
ê úë û
=

ê ú
ê úë û
=

æ ö -÷ç ÷ç > -÷ç ÷÷çè ø

= - -

-

=-

å

å



 

As such 

( )21
2

expn
Y

x x
n

æ ö÷ç ÷ç >  -÷ç ÷÷çè ø
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The RHS is clearly a distribution, because it takes value 1 at x = 0 and decreases 

thereafter, and we therefore have weak convergence by the second definition. 
 

Before we comment on this result, let us quote a quick Lemma 

Lemma: 
2 2 2/2 2 /2

3

/ 1
 

1
d

1 x y x

x
e ye

x x
e

x
-

¥
- -

æ ö÷ç ÷ £-ç ÷çç ø
£

÷è ò  

Proof: For the upper bound: 

2 22

Integral over 

/ /2/2 2 1
  d  d   

y x

y x

x x

y y

x
e e y e

x
y

³
¥

-
¥

-- £ =ò ò


 

As required. For the lower bound: 

22 2/2/ /2

4 3

2 3 1 1
1   ddy

x

y x

x
e y e

xy x
e y

¥¥
- - -

æ ö æ ö÷ ÷ç ç÷ ÷³ - = -ç ç÷ ÷ç ç÷ ÷çç è øè øòò  

(Which can be shown by differentiating the result).  

Corollary: 
2 2/2 /21

 d ~ as y x

x
e y e x

x

¥
- -  ¥ò . Making this more specific 

to a normally distributed random variable, suppose 2~ (0, )X N s , then 

( ) 2 2

2

2 2

/2

2

/2

/2

/2

1
exp  d

2
1

exp  d
2
1

~
2

y

x

x

x

X x y

e
x

s

y

s

s

ps

s y
ps
s

p

¥
-

¥
-

-

> =

=

ò

ò



 

 

It is interesting to note, therefore, how similar our result looks to the central 

limit theorem, despite the fact we did not center the original variables Yn. The 

distribution we eventually obtained has a tail integral, which, by the corollary, 

looks similar to that for a random variable. (In fact, the random variable with 

this tail integral is a Rayleigh random variable).  

Remark: A full rigorous treatment of this example will be done in homework 1.  

o Example: Let 
1 2
, ,X X  be IID 2(0, )N s  random variables, and let 

( )1
ma , ,x

nn
M X X=  . Consider the case 2 1s = , and let 

n
a  be such that 

( ) 1
1 n n

X a> =  (we will show in homework 1 that ~ 2 log
n

na ). We would like 

to show that 
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{ } { }( ) exp x
n n n

M x e xa a -- £  - " Î   

We first note the RHS has no discontinuity points. Next, note that as x ¥ , 

the RHS tends to 1, whereas as x -¥ , the RHS tends to 0. Finally, we note 

the RHS is monotone. Thus, the RHS is a valid cumulative distribution function. 

Let us now show convergence: 

( ) ( )
( )

( )

1

1

1

, ,

1

n n n

n

n

x x x
n n n n n

n
x

n

n
x

n

M X X

X

X

a a a

a

a

a a a

a

a

£ + = £ + £ +

é ù= £ +ê úë û
é ù= - > +ê úë û

 





 

We will now require a lemma 

Lemma: Consider two (possibly non-real) sequences { }n
a  and { }n

b . If  

0
n

a  , 
n

b  ¥  and 
n n

a b c , then (1 ) nb c
n

a e+   as n ¥ . 

This is precisely the situation in this case, with 
n

b n=  ¥  and 

( )1
0

n

x
n n

a X
a

a= +- >  , since 
n

a  ¥ . We must now consider whether 

0
n n

a b  . To do this, we will make extensive use of the Lemma in the previous 

example (namely that ( ) 2 /21
1 2

x

x
X x e

p

-> = ) 

( ) ( )

{ }

( )

22

2

2 2 2

2 2 2

2 2

2
1

1 2

22

/2 /2

/2 /2

1/

/2

1

1 1
~ exp

2
1 1

exp
2
1 1

2
1 1 1

2
2 2

1 1
~ 2

2

n n

n

n

n

n

n n

n

n n

n

n

n

x x
n nx

n

x

x
n

xx

x
n

xx
nx

n n
n

xx
n nx

n

X n

n x

n e e e

n e e e

n e e X

n
a a

a

a

a
a

a a

a

a a

a

a

a

a a
ap

ap

ap

a p
ap a p

a p a
ap

- --

- --

=

--

ì üï ïï ï> + ⋅ ⋅ ⋅ - +í ýï ï+ ï ïî þ

= ⋅ - - -
+

= ⋅
+

= ⋅
+

⋅ >
+

⋅

 





2 2/2 n

n

xxn

x
n

x

e e

e

a

a

a

a
--

-

=
+



 

 

As such, by the Lemma 
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( ) ( )1
1

n n

x

n
x x

n n n

e

M X

e

a a
a a

--

é ù£ + = - > +ê úë û


   

As required.  

o Definition (Tightness): A sequence of random variables { }n
X  with 

corresponding distribution functions{ }n
F  is said to be tight if 0e" > , 

( )K e$ <¥  such that 

{ }sup ( )
n n

X K e e> £  

Equivalently 

( )sup 1 ( )
n n

F K e eé ù-ê úû £ë  

Comment: A sufficient condition for tightness if sup
nn

X <¥ . To see why, 

with K > 0, and consider that by Markov’s Inequality 

( )
sup

n n n

n

X X
X K

K K

<¥

> £ £


 

  

o Proposition: Let { }n
X  be a sequence of random variables 

 If 
n

X X , then { }n
X  is tight 

 If { }n
X  is tight, then there exists a subsequence { }k

n  such that { }
kn

X  

converges weakly. 

This is somewhat isomorphic to the concept of compactness in real analysis. 

o Definition (Characteristic Function): A characteristic function (CF) of a 

random variable X is given by 

( ) exp( )
X

i Xj q q qé ù= Îê úë û   

Remarks 

 (0) 1
X

j =  

 ( ) 1
X

j q £ , because by Jensen’s inequality, { }( ) exp( ) 1
X

i Xj q q£ =  

 ( )( ) ( )n n n
X

i Xj 0 =  , provided 
n

X <¥ . 

 If X and Y are independent, ( ) ( ) ( )
X Y X Y

j q j q j q+ = , though the converse 

is false. 
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o Examples: If 2~ ( , )X N m s , then 

( )2 21
2

( ) exp
X

ij q mq s q= -  

Note also that if Y Xm s= + , then 

( )[ ]( ) ( )i X i
Y X

e eq m s qmj q j sq+= = +  

This is convenient in relating all normally distributed random variables to the 

standard normal.  

o Proposition (Levy characterization theorem): Let { }n
X  be a sequence of 

random variables with distribution functions { }n
F . If 

 ( ) ( )
nX

j q j q  for all q Î   

 ( )j q  is continuous at 0. 

Then 

n
X X  

and X has characteristic function ( )j q . 

Comments: 

 If 
n

X X , then the two conditions in the proposition trivially hold – 

this is really an “if and only if” statement. 

 One might wonder why the second condition in the theorem is needed. To 

see why, consider, for example, ~ (0, )
n

X N n . We then have 
2 /2( )

n

n
X

e qj q -= , and as n grows large, this converges to 

0 if 0
( )

1 if =0nX

q
j q

q

ìï ¹ï íïïî
 

This does not satisfy our continuity requirements at 0. To see why, 

consider that with K > 0, 

( ) 1
(0,1)

2n

K
X K N

n

æ ö÷ç ÷> = > ç ÷ç ÷÷çè ø
   

In other words, the distribution in question is not tight – tail probabilities 

grown with n. The continuity condition, therefore, can be thought of as a 

tightness condition. 
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 The Central Limit Theorem 

o Theorem: Let 
1 2
, ,X X  be IID with mean 

1
( )X m=  and variance 

1
2 ar( )Xs =  . Then 

1 (0,1
( )

)

n

ii N
X

n
s

m
= 

-å
 

Proof: It suffices to prove this for the case of 0m = . Let 
1

n

n ii
S X

=
= å , and 

consider its characteristic function 

( )
( )

( )
( )

( )

/

1

1

1

( ) exp /

exp

exp

exp

n
nS n

ni
jjn

n i
jj n

n i
jj n

n

X n

i S n

X

X

X

q

q

q

q

j q q

j

=

=

=

é ù= ê ú
ë û
é ù= ê ú
ë û
é ù= ê úë û

é ù= ê úë û
é ù= ê úë û

å












 

Now, let us take a Taylor Expansion 

( )
2

2
2 2

2 2

(0) (0) (0)
2

(0) ( ) ( )
2

1
2

X X X X nn

X n

n

R
nn

X i X R
nn

R
n

q q q
j j j j

q q
j

q s

¢ ¢¢= + + +

= + + +

= - +

   

Now, consider that 

( )( )

( )

/

2 2

( )

1
2

1

n

n

n

XS n n

n

n

b

n

R
n

a

qj q j

q s

=

æ ö÷ç ÷= - +ç ÷ç ÷÷çè ø

= +

 

Now, suppose we can show that 
2 2 2 2 2 2

2 2 2n n n nn
a b n R nRq s q s q sé ù= + = + ê úë û  (or in 

other words, that 0
n

nR  ) as n ¥ , then we would have 

2 2

/
( ) exp

2

( )

nS n

q s
j q

j q

æ ö÷ç ÷ -ç ÷ç ÷÷çè ø
=
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This is the characteristic function of 2(0, )N s , and it is continuous at 0q = . 

Thus, all the conditions of Levy’s Theorem hold, which proves the central limit 

theorem. 
 

All we now need to do is to prove that 0
n

nR   as n ¥ . To do this, first 

note the following standard result from deterministic analysis proof?!? 

0

1
2

( 1)!

( )

!!

n
n

n

ix

m

n
x xix

e
nm n=

+æ ö÷ç ÷ç ÷ç£  ÷ç ÷ç ÷+ ÷ç ÷çè ø
-å  

Here, min( , )a b a b = . Let us apply expectations 

0

1
2

( 1)! !

( )

!

n n
n

nix

m

ix
e

x x

n nm

+

=

æ ö÷ç ÷ç ÷ç£  ÷ç ÷ç ÷+ ÷ç ÷ç
-

è ø
å   

Now, use Jensen’s Inequality on the LHS to obtain 

( )
2 2

2

0

2( )
( , )

! 3! 2

m
i X

m

X XiX
e f X

m
q

q qq
q

=

æ ö÷çæ ö ÷ç÷ç ÷ é ù÷ çç- £  =÷÷ ç ê ú÷ç ë û÷ ç÷ ÷çè ø ÷ç ÷çè ø
å     

Now, observe that if 0q  , ( , ) 0f X q   almost surely, since X  is bounded. 

Similarly, note that ( , )f X q  is bounded by 
2 2X q , and since 

2 2X s= < ¥ , 

we can say that ( , )f X Yq £  with Y <¥ . We can therefore apply the 

dominated convergence theorem to conclude that 

( , ) 0 as 0f X q qé ù  ê úë û  

More details? 

But we have  

( )

3

3

2
2

3
2

2

( , )

3!

3!

n

n

n

n
f X

X
n X

n

R

n

X
X

q

q

q

q

q

ì üï ïï ïï ïï ï= í ýï ïï ïï ïï ïî þ
ì üï ïï ïï ïï ï= í

=

ýï ïï ïï ïï ïî þ
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Inside goes to 0 as n -> infinity for all theta, and is dominated by |X|^2 theta^2 

which has finite expectation, hence by dominated convergence it all goes to 0. We 

kind of need thrd moment – but clever combination here using second moments 

as well to be able to use interchange. 

 Odds & Ends 

o Proposition (The Skorohod Representation): Let { }n
X  be a sequence of 

random variables such that 
n

X X . Then there exists a probability space 

( ), ,W   supporting a sequence { }n
X ¢  and X ¢  such that 

d

n n
X X¢ =  and 

d

X X¢=  

And 
n

X X¢ ¢  almost surely. 

Proof: Let Fn be the distribution of Xn and F be the distribution of X. We know 

that 

 ( ) ( )
n

F x F x  ( )  

at all continuity points x of F. Now, define 

{ }1( ) inf : ( )F p x F px- = ³  

(This generalized inverse deals with cases in which there are discontinuities in the 

distribution). Note that ( )  implies that 

 1 1( ) ( )
n

F p F p- -  ( )  

How do we know? for all continuity points of F (and recall that by the definition 

of distribution functions, F only has a finite number of discontinuity points). 
 

Now, take ( ) ( ), , ,uniform di[ stribution0,1],=W   . Let U ~ U[0,1]. Let 

1 1( ) ( )
n n

X F U X F U- -¢ ¢= =  

Note that 

( ) ( )
( )

( )

( )

( )

n n

n

n

X x F U x

U F x

F x

¢ ¢£ = £

= £
=

 
  

Similarly, ( ) ( )X x F x¢ £ = . As such, 
d

X X¢=  and 
d

n n
X X¢ = , as required. Note 

also, however, that by ( ) , 
n

X X¢ ¢  for all but continuity points in W . Since 
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there are a countable number of such points, the set of such points has measure 

0. Thus, 
n

X X¢ ¢  almost surely. 

o Proposition (Continuous Mapping Theorem – CMT): Let { }n
X  be such 

that 
n

X X . Let f be a function with ( ) 0
f

X DÎ =  with Df being the set of 

discontinuity points of f. Then ( ) ( )
n

f X f X  

o Proposition (Converging Together Lemma – CTL): If { }n
X  is a sequence 

such that 
n

X X  and { }n
Y  is a sequence such that 

n
Y a  (where a is a 

deterministic constant), then 

 
n n

XX Y a+  +  

 
n n

X Y Xa  

 1n

n

X

Y a
X  provided 0a ¹ . 

LECTURE 4 – 9th February 2011 

 Introduction to Large Deviations 

o Consider a sequence of IID random variables, 
1 2

2~ (, , ),X NX m s . Let 

1

n

n ii
S X

=
= å . Fix a m> . We are interested in the value 

( )n
S na>  

In the case of the Gaussian distribution, we can use the bounds derived earlier in 

these notes 

( )

2

2

( )

( )1
exp

22 ( )

n
n

S n n a
S na

n n
a

Z n

a
n

n a

m m

s s
m

s
ms

sp m

æ ö- - ÷ç ÷ç> = > ÷ç ÷÷çè ø
æ ö- ÷ç ÷= >ç ÷ç ÷çè ø

æ ö- ÷ç ÷ç£ - ÷ç ÷÷çè ø-

 

  

And 

( ) ( ) ( )
21 3

( ) ( )

2

( )1
exp

22

n a n a

n

n a
S na m m

s s

m
sp

- -
- -

æ öæ ö - ÷ç÷ç ÷÷ ç> ³ - -ç ÷÷ çç ÷÷ç ÷çè ø è ø
  

Taking logarithms, we find that (c1, c2 and c3 are constants) 



Foundations of Stochastic Modeling Page 40 

 

 Transcribed by Daniel Guetta from 
lectures by Assaf Zeevi, Spring 2011 

( )
12 2

2 3 1 2

2 2

loglog ( ) ( )

2
g

2

1
lo

n

nc c n ca a
S na

n n n nn

m m
s s
- -

+ - £ > £ - -  

Now, this means that 

( )

( )

2

2

2

2

( )

2
( )

lim inf

1
lim sup log

1
lo

2
g

n

n n

n

a
S na

a
S na

n

n

m
s
m

s

-
> £-

-
> ³-




 

As such, we find that 

( )
2

2

(1
log

)

2n

a
S n

n
a

m
s
-

> -  

This result is the meta result of large deviations theory. It is easy to derive in the 

case of a Gaussian variable – we seek to develop this result in more generality. 

o Let us develop some insight into the exact concept of “large deviations”. The 

central limit theorem would tell us that 

~ (0,1)
n

n Z n Z NS m s» +  

A “natural” question, therefore, would be to consider 

( )
n

S n K nm s> +  

The theory of large deviations goes even further – since a m> , we can write 

( ) ( )
n n

S na S n Knm s> = > +   

In other words, the central limit theorem deals with “normal” deviations, of order 

n  from the mean. The theory of large deviations refers to larger deviations, of 

order n. We will now see why the central limit theorem is powerless to deal with 

these large deviations. 

o Consider a sequence of IID random variables, 
1 2
, ,X X , with 

1
( )X m=  and 

2

1
ar( )X s= <¥  As ever, let 

1

n

n ii
S X

=
= å . Fix a m> . We might be tempted 

to naively apply the Central Limit Theorem and write 

( ) ( )

0 as 

n
n

S n n a
S na

n n
a

Z n

n

m m

s s
m

s

æ ö- - ÷ç ÷ç> = > ÷ç ÷÷çè ø
æ ö- ÷ç ÷ >ç ÷ç ÷çè ø

  ¥
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Though this statement is correct, it isn’t particularly informative – it’s quite 

obvious that the probability in question tends to 0! This happens because of the 

factor of n  on the RHS of the inequality. The central limit theorem is clearly 

not equipped to deal with large deviations. 

o Theorem: Let 
1 2
, ,X X  be IID with mean m  and such that 1(( ) )XeM qq =   

exists for all q Î  , and assume 
1

( ) 1X m= < . Then for any a m> , 

( )1
(log )

n
S na I a

n
> -  

Where 

( ) sup log ( )

( )( ) sup

I a a M

I a a
q

q j q

q q

q
Î

Î

é ù= -ê úë û
é ù= -ê úë û





 

(We denote ( ) log ( )Mj q q= ). This is the convex conjugate of j . 

Remark: The same conclusions hold if ( )M q  exists in a neighborhood of the 

origin (plus some mild technicalities). 

o Example: Let us apply this theorem to Gaussian random variables, for which 

( )2 21
2

( ) expM q qm q s= + . In this case, 

{ }2 21
2

( ) supI a aq q qm q s= - -  

This is simply a quadratic, with argmax 
2

* a m

s
q -= . We then get 

2

2

( )
( )

2

a
I a

m
s
-

=  

Which is indeed what we found using Gaussian tail bounds.  

o Proof of Cramer’s Theorem: We will carry out this proof in two steps 

 Step 1: establish an upper bound 

( )1
lim sup log ( )

n n
S n

n
a I a> £-  

 Step 2: establish a lower bound 

( )1
lim inf log ( )

n n
S n

n
a I a> ³-  

Fix a m>  and 0q > . 

 Step 1: Recall from Markov’s Inequality that for any 0a > , we have 
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( ) 1
1

( )X
X a

a
> £

  

For this proof, we will need a more general form of Markov’s Inequality. 

Lemma (Generalized Form of Markov’s Inequality): Let 

:g + +   be an increasing function such that 
1

( )g X <¥ . 

We then have that 

( )1

1

( )
( )

( )

g X
X

g
a

a
> £


  

Proof: We have that  

( )1 1 1

1

( ) ( );

( ) ( )

g X g X X

g X

a
a a

é ù³ >ê úë û
³ >

 


 

As required.  
 

Now, consider that in our case. Since q  is strictly positive, we can write 

( ) ( )
( )
( )
exp( ) exp( )

n

n n

n

S na

S na S na

S na

e eq q

q q

q q
-

> = >

= >

£

 



 

(This is often known as a Chernoff bound. Note that we have used the 

generalized form of Markov’s Inequality in the last line). We then have 

( ) ( )
( )
( )

( )

11

11

( )

exp

exp( )

( )

exp [ ( )]

nSna
n

nna

i

nna

i

nna

na n

S na e e

e X

e X

e M

e e

n a

qq

q

q

q

q j q

q

q

q

q j q

-

-
=

-

=

-

-

> £

é ù= ê úë û
=

é ù= ê úë û
=

= - -

å


 



  

Let us try to optimize the bound (ie: make it as tight as possible). To do 

this, we choose q  such that 

{ }0
arg sup ( )aqq q j q>Î -  

Note, however, that 
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 The derivative of our objective, at 0q = , is given by 

(0) 0aa j m- ¢ = - > . 

 We will show, below that our objective is concave. 

Together, these two points imply that extending our optimization 

problem to q Î   will not change our optimum, since it necessarily lies in 

the positive quadrant. Thus, we can choose q  such that 

{ }arg sup ( )aq jq q qÎÎ -  

This is precisely the optimization problem involved in finding I(a). Going 

back to the above, we therefore find that 

( ) ( )exp ( )
n

S na nI a> £ -  

Precisely as requested. All that remains to do is to prove that ( )j q  is a 

convex function. Fix (0,1)a Î  and 
1 2
,q q Î  . We then have 

( ) ( )
( )
( )

1 1 2 1

1 2

1 2 1 2

(1 )

(1 )

[1 ] log [ (1 ) ]

log [ ]

log [ ]

X X

X X

M

e e

e e

aq a q

aq a q

j aq a q aq a q
-

-

+ - = + -

=

=


  

?????????
 

 Step 2: We now proof the lower bound, in a very different way. Assume, 

for notational convenience, that X has a density p(x) – this is not, 

however, required. Then, fix 0q >  and define a new density 

( )
( )

( )
0

xe p x
p x

M

q

q q
= ³  

which is a bona-fide density. Suppose :g    is such that 

1
( )g X <¥ , then 

1

( ) ( )
( ) ( ) ( ) d ( ) ( ) d ( )

( ) ( )

p x p x
g X g x p x x g x p x x g X

p x p xq q
q q

é ù
ê úé ù = = =ê ú ê úë û ê úë û

ò ò   

Similarly, 

1
1 1

1

( , , )
( , , ) ( , , )

( , , )
n

n n

n

p X X
g X X g X X

p X Xq
q

é ù
ê úé ù =ê ú ê úë û ê úë û
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Where here, : ng   . This is, effectively, a change of measure, and 

/p pq  is a likelihood ratio. 
 

Now, consider 

( ) { }

{ }

{ }

{ }

{ } ( )
{ }

1

0 1

1

1

1

( , , )

( , , )

( )

( )

( )

( )/ ( )

( )

exp

exp

n

n

n

n i

n

n

n S na

n
S na

n

n i
S na i

i

n i
S na Xi

i

n

S na n

ii

nS na

S na

p X X

p X X

p X

p X

p X

e p X M

M

X

S

q

q
q

q q

q

q

q

q

q

q

>

>

> =

> =

>

=

>

é ù> = ê úë û
é ù
ê ú= ê ú
ê úë û
é ù
ê ú= ê ú
ê úë û
é ù
ê ú= ê ú
ê úë û
é ùé ùê úê úë ûê ú= ê ú
ê ú
ê úë û

= - +





å




  

 

 

 

 

  ( )( )nj qé ù
ê úë û

 

Now, fix a 0d >  

( ) { } ( )

{ } ( )( )
( )( ( ))

exp ( )

exp ( )

n

n

n nna S na n

na S na n

n a n
n

S na S n

na n n

e e na S na n

q d

q d

q j q qd
q

q j q

q d j q

d

< £ +

< £ +

- - -

é ù
ê ú> ³ - +
ê úë û
é ù
ê ú³ - + +
ê úë û

= < £ +

  

 



 

This is starting to look like what we want – it is crucial, however, to 

ensure that the last probability stays bounded away from 0 – if not, it 

tends to negative infinity. Unfortunately, according to our original 

distribution, it does fall to 0. Our hope is to choose our new distribution 

(characterized by q ) to ensure we get what we want. 

 

Note that 

( )
( )  d

( )
( )

( )
( )

xxe p x
X x

M
M

M

q

q q
q
q

j q

=

¢
=

¢=

ò
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Now, suppose there exists a *q  such that ( )j q¢  [in fact, we have assumed 

X1 has a moment generating function that exists over the real line, so 

there does exist such a q ]2. Then the mean of Sn under our new 

distribution would indeed be na, which gives us hope that the probability 

above will be bounded away from 0. Formally, by the central limit 

theorem, under *q  

2 (0,1)n
S na

n
Ns

-
 

if * 2( )s < ¥ , where *

2* 22( () )X a
q

s = - . Under the conditions of 

Cramer’s Theorem, it turns out this is also satisfied. 
 

We then have that 

( )* * **

*

0

0 0

n
n

S na
na S na n

n

Z

q q

d
d

ss
d
s

æ ö- ÷ç ÷ç< £ + = < £ ÷ç ÷÷çè ø
æ ö÷ç ÷ £ £ >ç ÷ç ÷çè ø

 


 

As required. Now, returning to our expression above, 

( ) ( )*

*
* *1 1

log ( ) log
n n

S na a na S na n
n nn

q

q d
q j q dé ù> = - - - + < £ +ê úë û   

Taking a lim inf, 

( ) * *1
lim inf log ( )

n n
S na a

n
q j qé ù> ³- -ê úë û  

The last thing we now need to verify is that the *q  required is indeed the 

maximizer of the function above, to get I(a). To do that, note that 

{ }(sup )aq q j qÎ -  is a concave program, which implies first-order 

conditions are necessary and sufficient. In this case, they are ( )a j q= ¢ , 

precisely as desired.  

 Applications of Large Deviations Theory 

                                         
2 We mentioned that it is enough to the moment generating function to exist in the neighborhood of 0, 

“and some extra conditions”. These extra conditions are precisely those that ensure such a q  does exist. 
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o Example: Let 
1 2
, ,X X  be IID 2( , )N m s  variables variables. Fix a m> . We 

saw, earlier that 

( ) ( )
( )2

2

( )

2

exp ( )

exp

n

a

S na nI a

n m

s

-

> £ -

= -


 

The central limit theorem allows us to “handwave” (0,1)
n

n nNS m s» + . Using 

this result, however, we can be more exact – we can find a sequence an such that 

Sn eventually lies below 
n

n am+  almost surely. Consider: 

( ) ( )
2

2

( )

( / )
exp

2

na

n n n n

n

S n a S n

a n
n

m m

s

> + = > +

æ ö÷ç ÷ç£ - ÷ç ÷ç ÷çè ø

 
 

We now need to choose an an that ensure our envelope is summable. Let us 

consider, for 0d > , 22(1 ) log
n

a n nd s= + . This is very close to n , which we 

might expect to work given the central limit theorem. With that choice of 

envelope, 

( ) ( )
(1 )

exp (1 )log
n n

S n a n

n d

m d
- +

> + £ - +

=


 

This is indeed summable. Thus, by the first Borrel-Cantelli Lemma, 

{ }nn
S n am£ +  almost surely. Using a similar kind of argument, we could show 

that { }nn
S n am³ -  eventually almost surely. This is a much more precise 

statement than that of the central limit theorem.  

o Moderate deviations theory. We saw that a “typical” deviation is of order 

n , a “large” deviation is of order n. What about deviations in between? 

Theorem (Moderate Deviations): Under the conditions of Cramer’s 

Theorem, for any sequence 
n

a  such that 

 n

n

a  ¥  

 0n

n

a   

for any 0a > , 

( )
2

2 2
log

2n n

n

n a
S n am a

a s
> + -  
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Proof of upper bound: WLOG, set 0m =  and 1a = . 

2(0) 0 (0) 0 (0)j j j s¢ ¢¢= = =  

We then obtain, as 0q  , 

2 2

( ) ~
2

q s
j q  

(Recall that ( )

( )
li( ) ~ ( ) m 1f x

g x
f x g x  = ). Let us now use a Chernoff bound to 

deduce that 

( )
( )

exp( ) exp( )n n n n

n
n n

S S

n n n n

n
e e

aq

a a

j q

q q
-

é ù> £ ê úë û
=

 
 

But 
2 2

22
( ) ~

n n

q q sj , so 

( )
2 2

exp
2

n nS n
n n

C
n n

a aq s
q

æ ö÷ç ÷ç> £ - ÷ç ÷÷çè ø
  

Optimizing, we find 

( )
2

2
exp

2
n nS n
n n

C
n

a a

s

æ ö÷ç ÷ç> £ - ÷ç ÷ç ÷çè ø
  

As required.   

LECTURE 5 – 16th February 2011 

Random Walks & Martingales 

 Random walks 

o Definition (Random Walk): A random process { }0:
n

S n ³  is called a random 

walk (RW) if it can be represented as 
1

n

n ii
S X

=
= å , with the { }n

X  

independently and identically distributed, and independent of S0. 
 

Remarks: If S0 = 0: 

 
1

( ) ( )
n

S n X=   and 
1

ar( ) ar( )
n

S n X=   

 By the Strong Law of Large Numbers, 
1

( )
n

nS X»   

 
1

( ) (0,1)
n

S n X nNs» +  
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o Question: Suppose T is a positive, integer valued random variable. Is it the case 

that 
1

( ) ( ) ( )
T

S T X=   ? 

o Let us consider the situation in which T is independent of the { }n
S  (which is 

equivalent to saying T is independent of the { }n
X ). We then have 

( ) ( ) ( )1 11 1
( ) | [ ] ( ) ( )

T T

T i ii i
S X X T T X T X

= =

é ù= = = =ê úë ûå å         

Unfortunately, this answer is not particularly interesting or useful, simply 

because in all “interesting” situations, T is allowed to depend on the behavior of 

the system. Let us consider some more interesting cases. 

o Example: Consider a random walk defined as follows 

IID
1
2 1

1 with prob 
~    

1 with prob 1
n

i n ii

p
X p S X

p =

ìïï > =íï- -ïî
å  

In this case, 2 1 0nS

n
p - >  a.s., and so 

n
S  ¥  almost surely. Now, imagine 

0
1S =-  and define 

{ }: 0sup 0
n

T n S³ ==  

Because 
n

S  ¥ , we have ( ) 1T <¥ = . Furthermore, by definition, 

0 ( ) 0
T T

S S=  = . However, we have that 
1

( ) 2 1 0X p= - >  and that 

( ) 1T ³ . Thus, it is clear, in this case that 

1
( ) ( ) ( )

T
S T X¹    

Clearly, therefore, there can be some issues. In this case, the problem is that the 

time T is anticipatory; it is determined by full knowledge of the future of the 

random walk. 

o Definition (Filtration): We previously defined a probability space by the triplet 

( ), ,W  , where   represented possible events. We define ( )0
, ,

n n
X Xs=   to 

be the sigma algebra generated by 
0

,,
n

X X . This sigma algebra constrains all 

the information that is available from knowing the value of the variables 

0
,,

n
X X . We then say that { }n

  is a filtration, and clearly, 

1n n+Í Í Í   . 



Foundations of Stochastic Modeling Page 49 

 

 Transcribed by Daniel Guetta from 
lectures by Assaf Zeevi, Spring 2011 

o Definition (Stopping time): Suppose T is a non-negative integer-valued random 

variable. Then T is said to be a stopping time with respect to an underlying 

sequence { }n
X  if, for each k > 0, 

{ } ( )0
, ,

k kT k
f X X

=
=   

Where fk is a deterministic function. In other words, we require 

{ } k
T kk= Î "  

o Example (Hitting Times): Let { }0 :inf
n

T n X A³ Î= . We then have 

{ } { }0 1, , ,k kT k X A X A X A-= Ï Ï Î
=


   

Similarly, we would define { }0 :inf
n

T n S A³ Î= , and we would then have 

{ } { }0 1, , ,k kT k S A S A S A-= Ï Ï Î
=


   

o Proposition (Wald’s First Identity): Let Sn be a random walk 
1

n

n ii
S X

=
= å , 

with S0 = 0, and let T be a stopping time with respect to the sequence { }n
  

(where 
1

( , , )
n n

XXs=  ) 

 If 0
i

X ³ , then 
1

( ) ( ) ( )
T

S T X=    [this could, of course, we infinity]. 

 If 
i

X <¥  and ( )T < ¥ , then 
0

( ) ( ) ( )
T

S T X=    

Proof: Let { }1 1

T

T i ii i i T
S X X

¥

= £=
= =å å  . We then have 

{ }( )1
)(

T i ii T
S X

£

¥

=
= å    

Now, let us do both parts: 

 First part: Xi > 0, and indicators are always positive, so by Fubini I, we 

can interchange the expectation and the sum: 

{ }( )1
)(

T i ii T
S X

£

¥

=
=å    

Consider, however, that  

{ } { }

{ }1

1

1
T i T i

T i

³ <

£ -

= -

= -

 
  

This implies that { } 1iT i -³
Î  . Going back to our sum 
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{ }( )
{ } ( )

{ } ( )

{ }( )

1

1

11

1

1 1

1

( |

|

)

( )

ii T

ii T

i

T ii

i

i

i

T

i

T

i

S X

X

X

X

¥

=

¥

=

¥

=

£

-£

=

-

¥

£

£

é ù
ê úê úë û
é ù
ê úë û
é ù
ê úë

=
û

=

=

=

å
å
å

å

   

  

  

  




 

Using Fubini I again: 

{ }( )1

1

1
( (

( ) ( )

) )
i TT i

X

X T

S
¥

= £

=

= å   
 

 

 Second part: In this case, consider that, by the triangle inequality 

1

T

iiT
XS

=
£å  

By part 1, however, 

( ) 11
( )

T

ii
X T X

=
= <¥å    

The result then follows by Fubini II.  

o Example (Gambler’s Ruin): Consider a random walk in which S0 = 0 and 

1
2

( 1) ( 1)
i i

X X= = =- =  . We let 
n n

Z k S= + , with 0 k N< < <¥  – 

intuitively, k is our initial wealth, and Zn is our wealth at time n. Let 

{ }
{ }

inf

inf

0 : 0 or 

0 :  or 
n n

n n

T n

n

Z Z N

S k S N k

³ = =

³ =- == -

=
 

Consider that ( ) ( )
T T

Z k S= +  . But consider also that, by definition 

( ) 0 ( 0) ( )

( )
T T T

T

Z Z N Z N

N Z N

= = + =

= =

  
  

Now, unfortunately, the Xi are not non-negative. However, 1
i

X £ , and so it 

clearly has finite expectation. Let us now assume ( )T < ¥  (this will be proved 

in homework 2). By Wald I, we then have 

1
( ) ( ) ( ) 0

T
S X T= =    

And so 

( )

( ) /
T

T

N Z N k

Z N k N

= =
= =
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o Proposition (Wald II): Suppose { }iX  are IID bounded random variables, and 

1
( ) 0X = , 2 2

1
( )X s= . Let T be a stopping time with respect to { }n

 , and 

such that 2( )T <¥ . Then  

2ar( ) ( )
T

S Ts=   

Remark: If T were independent of the Xi, the result would be obvious. We seek 

to extend this to stopping times. 

Proof: Clearly, under the assumptions of this proportion, Wald I holds – as 

such, ( ) ( ) ( ) 0
T

S T X= =   . Now 

( )
( ) ( )

2
2

1

12

1 1 1

( )

2

T

T ii

T T T

i i ji i j i

S X

X X X

=

-

= = = +

=

= +

å
å å å

 

 
 

But by Wald I, 

( )2 2
11

2

( ) ( )

( )

T

ii
X T X

Ts
=

=

=

å  


 

Now, consider the second term 

( ) { } { }( )1

11 1 1 1

T T

i j i j T i j Ti j i i j i
X X X X

- ¥ ¥

- ³ £= = + = = +
=å å å å     

Now, imagine it were possible to apply Fubini 2. We then have 

( ) { } { }( )1

11 1 1 1

T T

i j i j T i j Ti j i i j i
X X X X

- ¥ ¥

- ³ £= = + = = +
=å å å å     

But note that because of the way we have written these sums, T j T i³  > . 

As such, we have that { } { } { }1T j T i T j³ ³ + ³
=   . As such 

( ) { }( )
{ }( )

{ } ( )

{ }

1

1 1 1 1

11 1

11 1

1 1

|

|

0

0

T T

i j i j T ji j i i j i

i j jT ji j i

i j jT ji j i

i T ji j i

X X X X

X X

X X

X

- ¥ ¥

³= = + = = +

¥ ¥

-³= = +

¥ ¥

-³= = +

¥ ¥

³= = +

=

é ù= ê úê úë û
é ù= ê úë û
é ù= ⋅ê úë û

=

å å å å
å å
å å
å å

  

  

  

 



  

Now, let us justify the use of Fubini 2. X is bounded, and so X K£  
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( )
( )

2 2

2

2

2
2

1

1

( )

T

T ii

T

ii

S X

X

KT K T

=

=

£ =

=

£

å

å  

This has a finite expectation, since T has a second moment.  

o Example (Gambler’s Ruin): In this case, 2 2
1

( ) 1X s= = , and we assume 

2( )T <¥  (again, see homework 2), we then have 

( ) ( )2 2( ) 0 0
T T T

Z Z N Z N kN= = + = =    

However, we also have 

2 2

2 2

2 2

2

( ) ( )

2 ( ) ( )

( )

( )

T T

T T

Z k S

k k S S

k T

k T

s

= +

= + +

= +

= +

 
 




 

And so 

 
2( ) ( )T kN k k N k= - = -  

 Martingales 

o Definition (Martingale): A process { }0:
n

M n ³  is called a martingale (MG) 

with respect to a filtration { }n
  if 

 
nn

M Î   

 
n

M n<¥ "  

 ( )1 1
|

n n n
M M- -=   

o Example (Random walk): Let Mn = Sn, with M0 = 0. Then 

 
nn

S Î   

 Provided 
i

X <¥ , then 
1n

S n X£ <¥   

 
1 1 1 1

| | ( )
n n n n n n n

S S X S X- - - -
é ù é ù= + = +ê ú ê úë û ë û     

Thus, if we let ( ) 0
n

X = , then our random walk is a martingale. 

o Example (Variance martingale): Consider 2 2
n n

M S ns= - , with 2
1

( )X < ¥  and 

1
( ) 0X = . Then 

 Condition 1 holds. 

 2 2 2( ) 2   
n n

M S n n ns s£ + = <¥ "   
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 ( ) ( ) 22 2 2
1 1 1 1 1

| | |
n n n n n n n n

M S n S X n Ss s- - - - -

æ öé ù ÷ç= - = + - =÷ê úç ÷ë ûè ø
      

o Consider that if we let 
1n n n

D M M -= - , we can write 
01

n

n ii
M D M

=
= +å . 

o Proposition: Let { }0:
n

M n ³  be a martingale with respect to { }n
  and put 

1i i i
D M M -= - . Then 

 ( ) 0
i

D i= "  

 If 2
1

(s )up
ii

D³ < ¥ , then ( ) 0
i j

D D i j= " ¹  

Remarks 

 Note that this theorem almost achieves the representation of a general 

martingale as a random walk.  Indeed, it expresses our martingale as a 

sum of mean-0 uncorrelated random variables. The Di, however, need not 

be independent (and indeed, in most “typical” cases, they will not be). 

 As we will see later, the boundedness condition is required to be able to 

argue that why exactly is this needed? 

22

i j i j
D D D D£ <¥    

(Note: in this case, it would be enough to require the second moment of 

each difference to be bounded, but it seems less clunky to require the 

slightly more stringent uniform boundedness condition). 

Proof: Fix i > 1: 

( )1

1 1

1 1

( )

( | )

( | )

0

i i i

i i n

i n i

D M M

M M

M M

-

- -

- -

= -
é ù= -ê úë û
é ù= -ê úë û

=

 
 
 




 

Now, fix 1j i> ³ : 

( )
( )

1

1 1

1 1

( ) ( )

( ) |

|

0

i j i j j

i j j j

i j j j

D D D M M

D M M

D M M

-

- -

- -

é ù= -ê úë û
é ù= -ê úë û
é ù= -ê úë û

=

 
 
 




 

(Note that this can be used to prove 
0 1

ar( ) ar( ) ar( )
n

i ii
M M D

=
= +å   ).  
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o Example: Let { }n
X  be IID, with ( ) 1

i
X =  and 

i
X <¥ . And let 

1

n

n ii
M X

=
= . This is a martingale: 

 Condition 1 satisfied. 

 
1

n

n ii
M X

=
= <¥   

 Conditioning 

( ) ( )
( )

( )

1 11

1

11

1 1

1

| |

|

|

n

n n i ni

n

n i ni

n n n

n

M X

X X

M X

M

- -=

-

-=

- -

-

=

=

=
=




 




 





 

It is quite astounding, therefore, that even this process can be written as the sum 

of uncorrelated increments! 

 Optional Stopping Theorem for Martingales 

o Question: If T is a stopping time, when is it true that 
0

( ) ( )
T

M M=  ? This is 

the question that will be concerning us in this section. Let us consider some 

simple examples. 

o Example: Let 
n n

M S nm= - , with M0 = 0 and 
1

( )X m= . When is it the case 

that 
0

( ) ( ) 0
T

M M= =  ? Effectively, we are asking when it is the case that 

( ) ( )
T

S Tm=   

This is precisely the subject matter of Wald’s First Identity.  

o Expample: Let 2 2
n n

M S ns= - , with 2 2
1 1

( ) 0, ( )X X s= = <¥  . When is it 

true that 
0

( ) ( ) 0
T

M M= =  ? Effectively, we are asking when it is the case that 

2 2( ) ( )
T

S Ts=   

This is precisely the subject matter of Wald’s Second Identity.  

o Proposition: Let  { }0:
n

M n ³  be a martingale with respect to { }n
 , and let T 

be a stopping time. Then for each m > 1 

( ) ( )0T m
M M =   

Where min( , )T m T m = . 
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LECTURE 6 – 24th February 2011 

o Proof: Let { }iD  be the martingale differences, and write 

{ }

01

01

T n

T n ii
n

ii T i

M D M

D M



 =

= ³

= +

= +

å
å 

 

Take expectations 

{ }( ) ( )01
)(

T i

n

T n ii
M D M = ³

= +å     

We know, however, that { } 1iT i -³
Î   

{ }( ) ( )

{ } ( ) ( )
( )

01

01

1

1

0

)( |

|

n

iT i

i

T n ii

n

iT ii

M D M

M

D M

-³

-

 =

= ³

= +

= +

é ù
ê úê úë û

=

é ù
ê úë û

å
å

    

   




  

As required.  

Remark: Consider that 

 Consider that lim
n T Tn

M M¥  . As such, lim
n T n T

M M¥ 
é ù é ù=ê ú ê úë û ë û  . 

 By the theorem above, however, 
0T n

M M
é ù é ù=ê ú ê úë û ë û  , which implies than 

0
lim

T nn
M M ¥
é ù é ù=ê ú ê úë û ë û  . 

Thus, every optional stopping theorem boils down to the following interchange 

argument – if we can make the interchange, then 
0T

M Mé ù é ù=ê ú ê úë û ë û  : 

lim lim
n T n n T n

M M¥  ¥ 
é ù é ù=ê ú ê úë û ë û   

o Corollary I: Let ( )0:
n

M n ³  be a martingale with respect to { }n
  and T be a 

stopping time such that T is bounded (in other words, there exists a K <¥  

such that ( ) 1T K< = ), then 
0

( ) ( )
T

M M=  . 

o Corollary II: Let 
T n

M Z £ , with ( )Z <¥ . Then by dominated 

convergence, the interchange holds and 
0

( ) ( )
T

M M=  . 

o Corollary III: Let ( )0:
n

M n ³  be a martingale with respect to { }n
  and T be 

a stopping time such that ( )T <¥ . Provided the martingale differences are 

uniformly bounded (
1

|
i i

D C-
é ù £ <¥ê úë û  ), then 

0
( ) ( )

T
M M=  . 
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Remark: This is a stronger version of Wald I. There, we had essentially 

established the OST under the conditions 
1

X <¥ , ( )T <¥ . In the case of 

a random walk, the X are exactly the martingale differences. This theorem is 

slightly stronger because here, it is enough for the conditional increments to be 

bounded). 

Proof: We have 

01

T n

T n ii
M D M



 =
= +å  

M0 is integrable. Now consider that, 

{ }

1 1

1

T n T n

i

T i

ii i

ii

D D

D

 

= =

¥

= ³
=

£å å
å 

 

Let us now take expectations. By Fubini I, we can then swap the expectation and 

sum, since the summands are positive 

{ } { } { }1 1 1 1
|

nT i T i T ii i ii i i
D D D -³ ³

¥ ¥ ¥

= = = ³

é ù é ù= = é ù
ê úë ûê ú ê úë û ë ûå å å         

Since the martingale differences are uniformly bounded bt C, this is < ( )C T . 

As such 

0
( )

T n
M C T M £ +  

M0 is integrable, and by the statement of the theorem, ( )T < ¥ . As such, our 

martingale is bounded by an integrable variable, and the OST holds by corollary 

II.  

 Martingale Limit Theory & Concentration Inequalities 

o In Optional Stopping Theory, we were looking for results about random times T. 

We now consider very large times T. 

o Proposition (Martingale Convergence Theorem): Let { }0:
n

M n ³  be a 

martingale with respect to { }n
  such that 

1
sup

n n
M³ <¥  (note: this is a 

much stronger condition than 
n

M <¥  for all n, because each item could be 

finite but the sum might diverge). Then 

a.s.
n

M M¥  

for some finite bounded random variable M¥ . 
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Proof: See Williams, page 109 

o Recall that 
0 1

n

n ii
M M D

=
= +å . This is a random-walk like structure, even 

though the Di may not be independent. We can write 

0

1

1 nn
ii

M M
D

n n n =
= + å  

At an intuitive level, since the Di are uncorrelated, we might expect the SLLN to 

hold and the last sum to converge to 0. If we succeed in showing that, we have 

effectively shown that Mn/n converges to 0.  

o Proposition (Martingale SLLN): Let { }0:
n

M n ³  be a martingale with 

respect to { }n
  such that 2

1
(s )up

nn
D³ < ¥  (this, as we saw above, is a 

requirement for the increments to be uncorrelated). Then 

0 a.s.n
M

n
  

Proof: Put 
1

k
n D

n kk
M

=
= å  (where, as usual 

1k k k
D M M -= - . Clearly, 

nn
M Î  , 

and 

1

1 11

1

11

1

| |

1
|

k n

k

n D D

n n nk nk

n D

n nkk

n

M

D
n

M

-

- -=

-

-=

-

é ùé ù = +ê úê úë û ë û
é ù= + ê úë û

=

å

å





 



 

  

and 
n

M <¥  for all n, due to the conditions on the second moments of Dn.. 

Thus, it is a martingale. Now 

2
2

1 2

n n i jk
n k i j

D DD
M

ijk= ¹

é ùé ù
ê úê ú= + ê úê ú
ê úê úë û ë û

å å    

The second term is equal to 0, since the D are uncorrelated. 

2
2 1

1 2

sup ( )n n k

n k

D
M

k
³

=
£ <¥å 

  

This implies that 

2

1 1
sup sup

n n n n
M M³ ³<¥  <¥    

(Notice that it is often easier to work with second moments rather than first 

moments, despite the fact finiteness of second moments is a stronger condition 



Foundations of Stochastic Modeling Page 58 

 

 Transcribed by Daniel Guetta from 
lectures by Assaf Zeevi, Spring 2011 

than finiteness for first moments). If so, by the Martingale Convergence 

Theorem, 

a.s.
n

M M¥   

Now, let 

{ }( )

1
: ( ) ( ) 1k

n D

kk
A M A

ww w¥=
== å   

1

1
: ( ) 0

n

kk
B D

n
w w

=

ì üï ïï ï= í ýï ïï ïî þ
å  

By Kroenecker’s Lemma A BÍ . Thus, ( ) 1B = . This proves  our Theorem.  

Remark: When we proved the SLLN, we went to great pains to work with a 

first moment only. In this case, we work with second moments, which makes the 

proof much simpler. It is interesting to note, however, that the scaling of /
k

D k  

is “overkill”. Our series would also have converged for 
(1/2)

kD

k d+ . Carrying the entire 

proof through, we obtain (1/2)/ 0  a.s.
n

M n d+   Thus, assuming more than first 

moments has indeed resulted in a stronger conclusion. Mapping this back to the 

IID world and letting 
1

n

n ii
S X

=
= å  with 2

1
( )X <¥ , we have obtained the 

stronger result that 
1

1

(log )
0

nn n
S

d+
 . 

o Proposition (Central Limit Theorem for Martingales): Let { }0:
n

M n ³  

be a martingale with respect to { }n
  and put 

1
max

ii nn
V D£ £= . If 

 
2( )

sup nV

n n
<¥

 

 0/
n

V n   

 1
1

22n

in i
D s

=
å  (deterministic and finite). This makes our martingale 

“very similar” to a random walk. 

Then 

( 1)
1

0,
n

NM
n

s  

Remark: The third condition is key here. For a random walk 
1

n

n ii
S Y

=
= å , it is 

the case that 
1

ar( ) ar( )
n

S n Y=  . Similarly, for a martingale, 
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0 1
ar( ) ar( ) ar( )

n

n ki
M M D

=
= +å    – we want to ensure these two results are as 

close to each other as possible. 

o Proposition (Azuma-Hoeffding Inequality): Let { }0:
n

M n ³  be a 

martingale with respect to { }n
  such that 

1 nn n n
M c nM D-- = £ "  

Then, for all 0, 0n l> >  

( )
2

0 2

1

2 exp
2

n n

kk

M M
c

l
l

=

æ ö÷ç ÷ç ÷- ³ £ -ç ÷ç ÷ç ÷÷çè øå
  

Remark: Suppose that  
n

D c k£ " , then we can re-write this as 

( )

( )

2

0 2

2

0

2 exp
2

2 exp
2

n

n

M M
c n

x
M M xc n

l
l

ì üï ïï ï- ³ £ -í ýï ïï ïî þ
ì üï ïï ï- ³ £ -í ýï ïï ïî þ




 

Or, choosing logn nl k= , we obtain 

( )0

log
log 2 exp

2n

n
M M n n

c

k
k

æ ö÷ç ÷- ³ £ -ç ÷ç ÷çè ø
  

Choosing, for example, 4ck =  produces a summable sequence, which can be 

used to obtain an almost sure result. 

Proof3: Define 
1k k k

D M M -= - . Let 0q > , and write 

( ) ( )1 1
2 2

1 1k k

k k

D D

k k kc c
D c c=- - + +  

Both terms in parentheses are non-negative (since the martingale differences are 

bounded by ck) and add up to one. As such, we can use Jensen’s Inequality to 

write 

( ) ( )
( )

1
2 2
1 1 1

2 2

kk k k

k

k k

k

k k

k DD c cD

c c

c c
c ck

k

e e e

De e
e e

c

q q q

q q
q q

-

-
-

+£

-

- +

+
= +

 

                                         
3 The proof of Azuma’s Inequality was actually covered in the next lecture. For expositional purposes, we 

chose to present this material here instead. 
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Recall, however, that since M is a martingale, 
1

| 0
k k

D -
é ù =ê úë û  . Recall, in 

addition, that 
2

2

/2x xe e xe
- + £ , which can be proved using a Taylor expansion. As 

such, 

2

1

( ) /2

|
2

k k

k

k

c c
D

k

c

e e
e

e

q q
q

q

-

-

+é ù £ê úë û
£

   

Now, consider 

0

2

( )

1

11

1

11

1( ) /2

1

exp( )

exp( ) |

exp( ) |

exp( )

n

n

n

nM M

kk

n

k nk

n D

k nk

nc

kk

e D

D

D e

e D

q

q

q

q

q

q

q

-

=

-=

-

-=

-

=

é ùé ù = ê úê úë û ë û
é ùé ù= ê úê úë ûë û
é ùé ù= ê úê úë ûë û

é ù£ ê úë û







 

 

 






 

Applying this process repeatedly, we get 

0

2
( )

1

( )
exp

2
n

nM M k

k

c
eq q-

=

æ ö÷çé ù ÷ç ÷çê ú ÷ë û ç ÷çè ø
å  

However, 

( ) ( )0

0

( )

0

( )

2
2

1

exp

exp
2

n

n

M M

n

M M

n

kk

M M e

e e

c

q ql

q ql

l

q
ql

-

- -

=

- ³ = ³
é ù£ ê úë û
æ ö÷ç ÷£ -ç ÷ç ÷÷çè ø

å

 
  

Optimizing over q  to make the bound as tight as possible, we find 

* 2

1
/

n

ii
cq l

=
= å . Substituting back into the equation, we obtain the required 

result.  

o Example: Suppose the 
i

X  are IID uniform random variables taking values in 

the set { }1, ,N=  . Let 
1

( , , )
k

B b b=  , with 
i

b Î   and k n=  . Now, 

draw n IID random copies of X, and write 

( )1 1
, ,n

n
XX X=   

Let k n . We wonder how many times the specific sequence B will appear in 

1

nX . We will call this number 
,n k

R . Finding the distribution of this is difficult. 

However, 
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( )


1

1

Number of ways we
Probability ofcan "place"  on 
finding  atby "sliding" it up and

a particular position
down the X

1
,

( ) ( 1)

n

n

B X
B

k

n k N
R n k= - +


  

Let 

,0
( )

n k
RM =   

And let 

, 1
| ( , ),

n k i ii i
R XM Xsé ù
ê úë û= =     

This is then a martingale, and 
,n n k

M R= . But consider that since each X can 

only be part of at most k of the inequalities 

1 , , 1
[ | ] [ | ]

n k ii i n k i
M M R R

k
- -

£

- = -  
 

Using the A-H inequality, we then have 

( )

( )

( )

2

0 2

2

, , 2

2

, ,

2 exp
2

( ) 2 exp
2

( ) 2 exp
2

n

n k n k

n k n k

M M
nk

R R
nk

x
R R xk n

l
l

l
l

æ ö÷ç ÷- > £ -ç ÷ç ÷÷çè ø


æ ö÷ç ÷- > £ -ç ÷ç ÷÷çè ø


æ ö÷ç ÷- > £ -ç ÷ç ÷÷çè ø



 

 

 

We can then construct a confidence interval 

, ,,
( ) ,

n k nn kk
R k n R kR na ac cé ùÎ - +ê úë û

   

Where ac  is chosen to make the probability of the interval 1 a= - .  

o Example: Let { }0:
n

X n ³  be an irreducible, recurrent Markov Chain (MC) 

with transition matrix P. Then, the only bounded solution to 

P =f f  

is a constant vector (a multiple of 1). (Note: the state space could be infinite). 

Remark: We can think of the vector f as a function : f  , where   is the 

set of states of the chain. Note as well that this is not the steady state equation, 

which satisfies P=p p . 
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Proof: Let ( )
n n

M X= f  for an f that satisfies the assumption of the proposition. 

The main question here is one of uniqueness, since it is clear that a constant 

vectors can solve Pf = f. Let us first show that Mn is a martingale: 

 ( )
n n

M X c= £f   

 
1

( , , )
n n n

XM XsÎ =   (in fact, it only depends on the last Xn). 

 
1 1 1 1

| ( ) | ( ) ( )
n n n n n n

M X X P X X- - - -
é ù é ù= = =ê ú ê úë û ë ûf f f   

As such, { }0:
n

M n ³  is a martingale with respect to { }n
 . Note that 

1
sup

n n
M³ <¥ , because we have assumed that f is bounded. Thus, 

n
M M¥  almost surely. Suppose there exists ,x y Î   such that 

( ) ( )x y<f f  

Since { }0:
n

X n ³  is irreducible and recurrent 

( ) a.s.

lim sup

li

( ) ( ) a.s.

m inf ( )

n

n n

n

x

f X y

f X £

³

f

f
 

This means, however, that lim inf ( ) lim sup ( )
n n n n

XX ¹ ff , which contradicts the 

convergence statement.  

LECTURE 7 – 2nd March 2011 

 Stochastic stability4 

o Deterministic motivation: Consider a dynamical system X(t) for which 

d ( ) ( ( )) dX t f X t t= , with :f    (this can be thought of as the “equation of 

motion” of the system). 
 

Now, consider an “energy” function :g +  , with 

( )
0

d ( )

d

g X t

t
e e£- >  

                                         
4 Some parts of this topic were covered at the end of the previous lecture. For expositional purposes, we 

chose to present the material here instead. 
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This is effectively a statement of the fact the energy of the system is “forced” 

down to 0, since it is “constantly decreasing” As such, 
0
( , )t x e$  such that 

( )( ) 0g X t =  for all 
0

t t³ ; in other words, our dynamical process is “pushed” 

towards a “stable” state. 

o We now need to adapt this idea to a discrete stochastic process. We can write 

our “equation of motion” as 
1

( )
n n n

X X f X+ - = . To add stochasticity, we can 

write 
1 1

( , )
n n n

X Xy e+ += , where the 
i
e  are random variables. This is effectively 

the definition of a Markov process, provided 
n
e  is independent of X0. If we make 

the 
i
e  IID, the Markov process becomes time-homogeneous. 

 

Now consider the “energy” function – it would be too strong to ask for the 

energy of the process to decrease along every path. We therefore require it to 

decrease in expectation: 

1
( ) ( ) |

n n n
g X g X X e+
é ù- £-ê úë û  

Since we need this be true whatever state our process first starts in, we can write 

0
[ ] [ | ]

x
X x⋅ = ⋅ =  , and the condition above becomes 

1
( ) ( )

x
g X g x eé ù - £-ê úë û  

o We now specialize this to a particular stochastic process. Consider a Markov 

chain { }0:
n

X n ³  that is irreducible. We would like to know whether the chain 

has a steady state. For a finite state space, all we need is to check for solutions to 

, 1P = =1p p p  ; indeed, the existence of such a p  is associated with positive 

recurrence. If the spate space is countably infinity, however, things get slightly 

more complicated; the two equations above do not suffice, and we also require 

³0p , which makes things more complicated. Here, we attempt to find simpler 

conditions for stability to hold. 

o Proposition: Let { }0:
n

X n ³  be an irreducible markov chain on a countable 

state space k . Let K Í   be a set containing a finite number of states. Then, if 

there exists a function :g +   such that (recall 
0

[ ] [ | ]
x

X x⋅ = ⋅ =  ) 

1
( ) ( )  and some >0

x
g X g x xe e- £- " Î   
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1
( )

x
g X x<¥ " Î   

Then ( )0,
n

X n ³  is positive recurrent 

o Proof: Let g be as in the proposition, and fix x Î  . Construct 

1

1
( ) ( ) ( )( )

n

n n kk
M g X g x Ag X

-

=
= - -å  

Where 
1

( )( ) ( ) ( )
kX k kk
g X gA Xg X

+
= - . Write 

1

1

1 1

1

1

[ ( )] (( ) ( )

( ( )

)

)
k

k

n

n n k
n

k

n

kk

X k k

X k k

g X g X

g X g X

M g X g x

D
-

-

=

=

-=
= - -

é ù= - ê ú

-

-
ë û

= -

å
å
å


  

Now, defining ( )0
, ,

n n
X Xs=  , we have that 

{ }
{ }

1

1

1 1

1 1

1

| ( ) ( ) |

( ) ( ) |

( ) ( )

0

k

k

k k

k k X k k k

X k k k

X k X k

D g X g X

g X g X

g X g X

-

-

- -

- -

-

é ù = -ê úë û
= -

= -

=

  
 
 

 

  

And so Dk is a martingale difference. Now, consider the set K Í   in the 

proposition. Let { }inf 0 :
k n

KT n X³ Î= , and Fix m Î  . 
k

T m  is a bounded 

stopping time so we can apply the OST. 

( ) ( )0
0

kT m
M M = =   

By plugging this into the definition of the martingale Mn 

( ) 1

0
( ) ( ) ( )( ) 0k

k

T m

T m kk
g X g x Ag x

 -

 =

é ùé ù - - =ê úê úë û ë ûå   

If cx KÎ , 

1
( ) ( ) ( )( )

x
g X g x Ag x e- = £-  

However, consider the sum – up to the hitting time, all the summands will be 

outside K, and will therefore be less than or equal to e- . As such 

( )( ) 1

0
( )( )kT m

k kk
Ag x T me

 -

=
£- å  

And so 

( )( ) 1

0
( )( )kT m

k kk
Ag x T me

 -

=

é ù- ³ ê úë ûå   

Combining our two inequalities 
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0

( ) 1

0
( ) ( ) ( )( )

( )

k

k

T m

T m kk

x k

x k

g X g x Ag x

T m

g x T m

e

e

£

 -

 =

é ùé ù - = ê úê úë û ë û
é ù£ - ê úë û
é ù- £- ê úë û
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 And so 

( )/
x k

T m g x eé ù £ê úë û  

But 0
k k

T m T£    and 
k

T < ¥ . So by monotone convergence 

( ) / c
x K
T g x x Ke£ Î  

There is therefore a finite upper bound over the expectation – the mean return 

time to the set K is therefore finite in expectation.  

o “Application”: Consider the stochastic system 
1 1n n n

X X Za+ += +  with 

{ }  iid
n

Z  and 
0

X x= . We want conditions on a  and distributions of Z such 

that Xn is stable. Use 

1 1 1
( )

( )

x x
g X

g x

Z

x

x Z xa a= + £

=

+    

So if 
1

Z <¥  and 1a < , then we might be able to make this work, because 

we would then have 

( )1
( ) ( ) 1 ( ) provided 

1
x

Z
g X g x x Z X

e
a e

a

+
- £ - + £- ³

-


   

Queuing 

 Sample path methods 

o We will consider a simple queuing model: 

 One single buffer, with unlimited space. 

 FIFO (first-in-first-out) service 

 A single server which processes work at unit rate. 

This model is often called the G/G/1 queuing model; arrival times are arbitrarily 

distributed, workloads are arbitrarily distributed (neither necessarily 

independent) and there is a single server. 
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o The variability in the system comes from the flow of work into the system. The 

points in our sample space are { }( , ) :
n n

t S nw = Î  , with Sn > 0 and both Sn 

and tn finite. A single point in the sample space is an infinite set of these 

numbers. Here is a pictorial representation of a single point, w Î W  in our sample 

space: 

 

o We assume the flow is stationary – in other words, 
disttq w w= , for any w Î W , 

where ( , )t Stq w t= +  and ( , )t Sw = . 

o Definition (load): We define the load of the system as ( )[0,1]nn tn
Sr ÎÎ

= å 
  . 

The positioning of the interval [0,1] does not matter, since the flow is stationary. 

If the incoming load is greater than 1, the system will eventually saturate; if it is 

less than 1, it’ll rest sometimes. The case 1r =  needs separate analysis. 

o We also assume the flows are ergodic, and that 

[ , ]nnn t s

t

t

s

S

t s
r

r
-¥

¥

ÎÎ 
-



å 


 

o Let ( )
t

W w  denote the work in the system at time t for a point w  in the sample 

space. We will simply denote this as Wt. The time between “empty times” at the 

server is called a busy cycle. 

o Now 

( )

1

2 1 1

1

1 2

[ , )

0

( ) 0

( )( )
( )

( )

n

n

t

n nt n

t n n n n

t

t

t S t tW
W t t t

W t t S t t

t t

t t

a

a

aw

+

+

+

+

- +

+

+

ìï =ïïï -ïï £
ïïï - + == íïï - -ïïïïï - - + =
î

£

Î

ïï

 

These are called Lindley’s Euqations. 
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o Set s < t and w Î W . Define ( )s
t

X w  to be the work in the system at time t given 

the system is empty at time s. For the point w  depicted above (and assuming 

1
s t< ), s

t
X  would look like this 

 

o For s s¢ < , it is clear that 

( ) ( )
t

s
t

sX X ww¢ ³  

Because this variable is non-decreasing in s, *( ) lim ( )s
t s t

X Xw w-¥=  exists. This 

is the “steady state” of the system; what we would observe if we had started the 

system a very, very long time in the past. 

o Now, define a time-shift operator tq  so that ( ) ( )s s
t t

X X t
t tq w w+

+= . As such, we 

have 

* *lim ( ) lim ( ) ( ) ( )s s
s t s t t t

X X X Xt
t t t tq w w w q w+

-¥ -¥ + += = =  

As such, * *( ) ( )
t d t

X X tw q w= . Shift invariance also holds for the starred process. 

LECTURE 8 – 23rd March 2011 

o We have seen a number of properties of *
t

X , including the fact that it exists. It 

might, however, be equal to infinity. We now look for conditions under which *
t

X  

is finite. 

o Proposition: If 1r < , then *  a.s.
t

X <¥  for all t. 

Proof: Fix t Î   and w Î W  and define 

{ }( ) sup : ( ) 0s s
t

T t Xtw t w= < =  

Intuitively, this is the last empty time before time t (this is clearly not a stopping 

time; just a random time): 

s
1
t

2
t

3
t

4
t

5
t

6
t

s
t

X



Foundations of Stochastic Modeling Page 68 

 

 Transcribed by Daniel Guetta from 
lectures by Assaf Zeevi, Spring 2011 

 

 Now, consider that (dropping the argument for s
t

X  for simplicity) 



{ }

{ }

{ }

Work processedWork in system Work entering the
in [ , ]at system in [ , ]

[ , ]

[ , ]

[ , ]

( )

( )

ss s
t

s
n t

s
n t

s
n t

t t

s
t

T tT T t

s s s
t n tnT

s

t T t

t T t

t T

n

t

n t

nn

X X S t T

S t T

S

Î Î

Î Î

Î Î

= +

= -

£

- -

-

å
å
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1

1

1

 

Now clearly, for s s¢ < , s
t t
sT T¢ £ ; in other words, s

t
T  decreases as s decreases. 

This is because by moving s (empty time) further in the past, we are potentially 

introducing more work into the system). This implies that lim s
s t t

T T-¥
-¥ =  

exists. Let us assume that 
t

T-¥ >-¥ . This implies that there is some finite time 

in the past at which the system was empty, which implies that the amount of 

work at t, *
t

X , is finite. 
 

All we therefore need to do, therefore is to show that . .1  a s
t

Tr -¥ >-¥<  

We do this by contradiction; suppose 1r <  and 
t

T-¥ = -¥  on a set w  of 

sample paths. From the second line above, we have, 

{ }[ , ]
( )

s
n tt T t

s s
t n tn

X S t T
Î Î

= - -å 
1  

Now, however, that 0s
t

X ³  (there can never be negative work in the system), 

and so, dividing by s
t

t T-  throughout, we obtain 

{ }[ , ]
1

s
n t

nn

s
t

t T t
S

t T

Î Î
³

-

å 
1

 

Note that if we were to replace s
t

T  with s, the LHS of this expression would form 

a sequence with limit to r  as s -¥ . By the definition of a limit, however, 

this is also true for any subsequence of that sequence. But since we have assumed 

( )s
t

T w ts
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s
t

T -¥  as s -¥ , the LHS above is such a subsequence. Thus, letting 

s -¥ , we find 

{ }[ , ]
1

s
n t

nn T

s

t

s

t

t

S

t T
r

Î

-

Î

 ¥£ 
-

å 
1

 

This is a contradiction, since we have assumed 1r < . As such,  a.s.
t

T-¥ >-¥  

and *  a.s.
t

X <¥   

o Definition (Coupling Time): Let 
,
( )

t
W a

t w  denote the load in a system, at time 

t and along sample path w , given that the system is allowed to start with load 

a  at time t . As before, let *( )
t

X w  denote the load in the system at time t given 

that system started empty at t = -¥  (the “steady state”). Then 
0

T , called the 

coupling time, is the first time at which both the paths “couple” – past that 

point, the two paths behave identically. 

 

o Proposition: If 1r < , then 
0

 a.s.T <¥  

Proof: WLOG, assume 0t =  and denote 
,t t

W Wa a
t º . Also assume, WLOG, that 

*( )Xta w>  (ie: the transient process starts higher than the steady-state process, 

as pictured above). In this case, the diagram above should make it clear that the 

coupling time is the first time at which both processes are empty. Since the 

transient process is more loaded than the steady-state process, this is effectively 

the time at which the transient process first empties. In other words, 

{ }0
inf 0 : 0

t
T t W a= > =  

0
Tt

*
t

X

,t
W a

t

a
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Assume 1r <  and suppose 
0

T = ¥  on a set of nonzero probability. This implies 

that 0 0
t

tW a > " ³  and that the server is constantly working for all t > 0. As 

such 



{ }


Work at Work processed

0 in [0, ]New work in [0, ]

[0, ]
   0  

n

t tt

t n t tn
W S ta a

=

ÎÎ
£ = + -å 


1  

Dividing by t and re-arranging, we obtain 

{ }[0, ]
1 n

n t tn

t

S

t t

a
r

ÎÎ

¥£ + 
å 

1
 

This is a contradiction, and so 
0

 a.s.T <¥   

o Example: This theorem comes in particularly useful, for example, in estimating 

quantities like ( )*
t

X AÎ . Consider the following estimator, based on a queue 

started at an arbitrary point a  

{ }0
ˆ d(  

1
)

sW A

t

t
p A s

t
aÎ

= ò 1
 

As t grows, one might expect this to be a good estimator for ( )*
t

X AÎ . To 

show this formally, consider that 

{ } { }

{ }
( )

0

0

*

0

0

0

*

 d  d

 

1 1
ˆ ( )

1

0

d

s s

s

T t

t T

t

W A W A

X A

t

T

s sp A
t t

t

T
s

t
X A

a aÎ Î

Î

= +

+

 +

£

Î

ò ò

ò

1 1

1



 

We can bound the estimator the other way by simply ignoring the first term. 

Either way, we find that ( )*  a.s. a) s ˆ (
tt

X Ap A tÎ ¥  . Our estimator is 

therefore consistent. Intuitively, this is because the chains eventually couple.  

o We now ask how fast this convergence occurs… 

o Proposition: If 1r <  

{ } { }
1 11

* *
, 1 1,

su , 0, ,p ,
n n nA t t tA n t n

W A W A X A X Aa a
t t t¥+ +Î Î - Î Î      

Where 
1

,,
n

A A  are measurable sets and for all 
1

( ,, ) n
n

tt Î   and 0a > . This 

is called convergence is total variation and is stronger than weak convergence. 
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Proof: We prove the theorem when n = 2. This generalizes straightforwardly. 

Fix 0a > , 
1 2
,t t Î  , 0t >  and sets A1 and A2. Now 

{ } { }
{ } { }

2

1 2

1 1

2 1

2

* *
1 2 1 2

* *
1 2 1 2
,

,

,

,
t

t

t t t

t t t

W A A X A X A

W A A X A X A

W

W

a
t

a
t

a
t

a
t t t

+ +

++ + +

Î Î - Î Î

Î - Î Î= Î

 

 
 

Calling the first event t  and the second t , we can write this as 

( ) ( ) ( ) ( )0 00 0
,, , ,T T TTt t t tt t tt> + £ - £> -        

Note, however, that if 
0

T t£ , the steady-state process is identical to the 

transient process. As such, the second and fourth terms cancel, and we can write 

this as 

( ) ( ) ( ) ( ){ }
( )

0 0 0

0

0
, max , ,

0

, ,T

T

TT Tt t t t

t

t tt

t

t

¥

> - £ >



>

£ >

>   


   

 

Where the last step follows from the fact 
0

 a.s.T <¥  if 1r < . Since this result 

does not depend on the sets A1, A2, we can take a supremum over all such sets 

and obtain our required result.  

o We can compare to what happens in Markov chains. Consider a finite-state, 

irreducible Markov chain, and consider the quantity 

{ } { } { }
( )

0 ,

,

| max

max i

n n i j j i

T n
i j j

X i X j X i T n

e e

p

q q-

= = - = £ >

£

  


 

Here, the first probability is taken with respect to a Markov chain that starts in 

an arbitrary state j (the transient process). The second probability is taken with 

respect to the steady state. Since the expectation of the moments of T is finite 

(see homework 2), this implies that this difference falls exponentially fast. 

o Proposition: If 1r > , then for all 0a > , lim inf 0tW

t t

a

¥ >  almost surely. In 

other words, the workload increases linearly with time. 

Proof: Denote the cumulative idle time up to time t as It. We then have 

{ } ( )
{ }

[0, ]

[0, ]

n

n

t tt n tn

n tn t

W S t I

S t

a a
ÎÎ

ÎÎ

= + - -

-³
å

å




1

1
 

Dividing by t 
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{ }[0, ]
1n

nnt t t
SW

t t

a
ÎÎ

³ -
å 

1

 Letting t  ¥ , we get that 

lim inf 1 0t
t

W

t

a

r
¥

³ - >

 This is intuitively sensible – the amount that accumulates in the system is 

whatever load there is in excess of 1.  

 Little’s Law (Conservation Laws) 

o We now consider a setting in which work ( ), :
n n

t S n Î   enters a system and 

then leaves the system at a time ( ):
n

d n Î  . We let 
n
q  be the sojourn time of 

the nth job in the system, given by 
n n

d t- . 

 

We do not put any constraints on the working of the system. For example, the 

server could spend some of its time idling. In particularly, we do not assume that 

the server processes work on a FIFO basis, so it is not necessarily the case that 

1 2
d d< <. 
 

We define the following quantities 

{ }( ) sup : number of arrivals in [0, ]

( ) number of of departures in [0, ]

( ) ( ) ( ) work in the system at time 

n
A t n t t

D t t

N t A t t

t

t D

= =£
=

= - =
 

The only two assumptions we make is that the following two statements are true 

for every sample path 

 
( )

li ),m (0
t

A t

t
l¥ Î= ¥  

 1im (0, )l

n

kk
n n

q
q=

¥ Î= ¥å
 

o Proposition: Under these assumptions, 

0

1
( ) d

t

N s s
t

lqò  

System 
( ), :

n n
t S n Î  ( ):

n
d n Î 

n n n
d tq = -
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Intuitively, this states that the average amount of work in the system at any 

given time is equal to the average number of arrivals per unit time multiplied by 

the average sojourn time. 

Proof: 

0 0
( ) d ( ) ( ) d

t t

N s s A s D s s= -ò ò  

Note that we can write 

{ }

{ }

( )

( )
n

n

t s

n s

n

d

A s

D s
£Î

£Î

=

=
å
å





1

1
 

As such 

{ } { } { }( )
n n n nn t s d s t s dn

N s
£ £ £ £Î Î

= =-å å 
1 1 1

 

(The last equality follows because any jobs that arrive after s won’t be counted 

at all, and any events that arrive and leave before s will be counted by both 

indicators and therefore cancel out). By swapping the summation and integration 

(valid by Fubini), we obtain 

{ }0 0
( ) d

Amount of time 

 d

job  was

in the system during [0, ]

n n

t t

n t s d

n

N s s

n

s

t

£ £Î

Î

=
ì üï ïï ï= í ýï ïï ïî þ

åò ò

å





1

 

We can bound this above by considering the sojourn time of all arrivals up to 

and including time t (though some of them may overrun past t) and lower bound 

it by considering the sojourn time of all job that depart before time t (even 

though some jobs that leave after t do spend some time in the system before t). 

This gives 

( ) ( )

0 00
( ) d

i

tD t A t

n ni n
N s sq q

= =
£ £å åò  

Where ni is the index of the ith job to leave the system (since we have no assumed 

FIFO processing discipline, we cannot assume that 
i

iq = ). 

 

Before we continue, we will need the following claim 

Claim: Under the two assumptions above 
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0 as n

n

n
t

q
  ¥

 

Intuitively, the second assumption states 
n
q  grows slower than n, so we 

would expect this to be true. 

Proof: Consider that 

1

11 1

1 1

1 1
0

n n

n nk kn k k
k kk kn n n n

q qq
q q q q

-
-= =

= =

-
= = -  - å å å å  

Consider also that 

( )
 as n

n

n n

A tn
t

t t
l=   ¥  

Finally, 

0 0n

n

n

n t

q
l ⋅ =

 

As required.  

 

Now by our claim, for all 0e > , there exists an ( )N e  such that for ( )n N e>  

nn n

n n

t

t

d

t

q
e e

-
£  £  

This implies that (1 )  ( )
nn

t n Nd e e£ + " > . This means that all jobs after the 

( )N e th job that arrive in [0, t] will have departed by time (1 )t e+ . Therefore 

( )( ) (1 )

( ) 1 0 i

A t D t

n nn N i

e

e
q q

+

= + =
£å å  

Putting this together with the bounds developed above, we find that 

( )(( ) (1 )

( ) 01

1 )

1
( )

1 1 1

(1 )
 d

(1 ) (1 )

A t A t

n nn N n

t

N s s
t t t

e e

e
q q

e e e

+ +

= + =
£ £

+ + +òå å  

Let’s first consider the upper bound 

( ) ( )
( )

( )(1 ) (1 )

1 1

(1 1

(1

1

( (1 )1 ) )

A t A t

n nn nt

A t

t A t

e ee
lq

e e
q q

e
+ +

= =

æ öæ ö+ ÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷+ +÷ ÷ç çè øè ø
=

+ å å
 

The first term tends to l , by assumption 1. The second term tends to q  because 

 By assumption 1, ( )
t

A t ¥ ¥  
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 By assumption 2, n

n

q
qå  , which means any subsequence thereof also 

q . Since ( )(1 )A t e+  ¥ , the second term above is precisely such a 

subsequence. 

This implies that 

0

1
lim sup ( ) d

t

t
N s s

t
lq¥ £ò  

Now the lower bound 

( ) ( )

( ) 1 ( ) 1

( ) ( )

0 0

( ) ( )

0 0

( )1 1 1

(1 ) 1 ( )

( )1

1 ( )

( )1

1 ( ) ( )

1

A t A t

n nn N n N

A t N

n nn n

A t N

n nn n

A t

t t A t

A t

t A t

A t

t A t A t

e e

e

e

q q
e e

q q

e

q q

e

lq
e

= + = +

= =

= =

=
+ +

-
=

+
æ ö÷ç ÷ç ÷= -ç ÷ç ÷+ ç ÷÷çè ø


+

å å

å å

å å  

Again, the first term  tends to l  by assumption 1. The second term tends to q  

by a similar logic as above, and by noting that since ( )N e <¥ , the second term 

in brackets tends to 0. As such, we get 

0

1
lim in

1
f ( ) d

t

t
N s

t
e

lq
e¥ ³

+ò  

Since this is true for all 0e > , this, together with the lim sup above, proves our 

theorem.  

LECTURE 9 – 25th March 2011 

 Single-server queue; IID case 

o We now specialize our analysis to a situation in which the workloads and inter-

arrival times are IID. Letting 
1n n n

t tt -= -  be the time gap before the nth job 

arrives, this situation requires the { }n
S  and { }n

t  to be IID. There is, once 

again, only one server. We often denote this situation GI/GI/1. 

o We also denote by wn the time that the nth job has to wait in queue before it is 

served. In that respect, 
n n n n

d t w S= + + . Now, consider that 
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( )

1

1
1 1

1

0
n

n
n n n

n

n

n

n

d
w

d t d

d t

t

t+
+ +

+

+

+

ìïï= íï - >ïî
= -

£

 

As such 

( )1 1n n n n
w w S t

+

+ += + -  

Let 
1n n n

Z S t-= - . We then have 

( ) ( )1 1 1
max 0,

n n n n n
w w Z w Z

+

+ + += + = +  

Since the Zn are IID random variables, this is none other than a random walk 

“capped off” at the origin. Letting 
1

n

n jj
Zs

=
= å , we find that 

( ) ( )
( )

1 1 1

2 1 2

2 1

2 0 2

2

max ,0 max ,0

max(0, , )

min
k k

w Z

w w Z

s

s s s
s s£

+

£

= =

= +
= + - -
= -

 

In fact, carrying this analysis forwards, we find that 

0
min

nn kkn
w s s£ £= -  

The second term takes into account the fact we have a reflected random walk, 

and prevents the walk from going negative. 

o One thing the GI/GI/1 framework gives us over the G/G/1 framework is that we 

can now say something more about the distribution of the waiting times: 

{ }
{ }

0

0 1

min

max

max

n n k k

n k

n

j

n

k n

k n j k

w

Z

s s

s s
£

£ £

= +£ £

= -

= -

= å
 

Consider, however, that the Zj are IID. As such, we can change indices on the Z 

at will and still maintain equality in distribution. Therefore 

{ }
{ }

0 1

0

max

max

k

n d jj

k

n

k n

k n

w Z

M

s
£ £

£ £

=
=

=
=

å
 

Since Mn is a non-decreasing sequence, 
a.s. 0

max
n k k

M M s¥ ³ = . As such, 

 as 
n

nw M¥  ¥ . [Note: convergence in distribution is the best we can hope 
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for in this case, because Mn has some structure (the fact it’s non-decreasing) that 

wn does not. However, since this is a Markov chain, a stationary distribution is all 

we could really want]. 

o If the random walk has positive drift – in other words, if  

1
( ) ( ) ( ) 0

n n n
Z S t-= - >    

– then the random walk drifts to infinity and the waiting times get infinitely 

large. This is consistent with our findings in the G/G/1 queue, since 

1
( ) ( ) 1

n n
St r+ >  <  . On the other hand, if the random walk has negative 

drift, the chain is stable and the waiting times return to 0 infinitely often almost 

surely (we motivated this result in homework 2 using a simpler reflected random 

walk). 

 The single-server M/M/1 Markovian queue 

o We now consider the most tractable of all single-server queue models; the M/M/1 

in queue. In that case, we assume the { }n
S  are IID and exponentially distributed 

with parameter m  whereas the { }n
t  are IID and exponentially distributed with 

parameter l . 

o Consider the process 

( ) Number of jobs in system at time 0 X t t= ³  

{ }( : 0)X t t ³  is a continuous-time Markov Chain with countable state space. In 

fact, it is a birth-and-death process: 

 

We now proceed to analyze this CTMC (note that ( )lim 0( ) ( ) f h

h h
f h o h ¥ == ) 

Consider t > 0 and a small h > 0. We have 

0 1 2 … 

l l l

mm m
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{ }

( ) 1

( ) 1
( ) | ( )

1 ( ) ( )

( ) otherwise

h o h j j

h o h j j
X t h j X t i

h o h j i

o h

l
m
l m

ìï + = +ïïï + = -ïï+ = = = íï - + + =ïïïïïî

  

Our transition matrix P then takes the form 

1

1 ( )

1 ( )

        

     

      0

0

0 0

0   

0

 

h

h

h

h

h h

h hP h

h

l
m l

m l
m

l
l m

l m

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úë

-
- +

- +

û

 


 

We can write this as 

0

( ) 0

0 ( ) 0 ( )

0

0

( )

h

h

P I h o h

P I Qh o h

l l
m l m l

m l m l
m

é ù-ê ú
ê ú- +ê ú
ê ú- += + +ê ú
ê ú
ê ú
ê ú
ê úë û

= + +

 
 

 

Q is the rate matrix, defined by 
0

lim hP I

h h
Q

-


= . The steady-state equations in 

this case are 

0

1

h
P

e

p p
p
p

³
⋅ =

= 

 

Feeding our expression for Ph into the first equation, we obtain 

( 0)Qh o h Qp p p p+ = =+      

For our particular matrix, this give 

1 1

0 1

( ) 0

0

n n n

lp
lp m l p m

mp
p- +- + +

- =
=

+
 

Letting /r l m=  and assuming 1r < , we obtain 

0 1

1 1
(1 ) 0

n n n

p r p
rp r p p+ +

=
- + + =

 

Solving this recurrence relation, we obtain 

1 1n

n n
c cp rr p =  == -å  
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So 

( ) 01 n

n
np r r- ³=  

This expression passes a “sanity check” at n = 0; the probability the chain is 

empty is given by 
0

1 1 l
m

p r= - = - , which we would expect to be the average 

amount of time the system is empty. 

o We can use Little’s Law to good effect; consider the following two examples; the 

first is trivial, the second less so 

 Consider the server as the “system” 

Let S be the number of items in the server. The average sojourn time 

in the server is 1
m

. As such, by Little’s Law 

( )Sp

l
r

m
= =  

Note, however, that 
System is busy System is idle

1 0S += ⋅⋅ 1 1 . As such, 

( )( ) System is busySp r= =  . The result above is therefore 

consistent with what we would expect. 

 Consider the queue as the “system” 

Let Q be the number of items in the queue. The sojourn time in the 

queue is simply the waiting time, wi. As such, by Little’s Law 

( ) ( )Q wp pl=   

(where w is the waiting time for any new item that joins the queue). 

Now, note that ( )( ) ( ) 1Q t X t
+

= -  (we must subtract any item 

currently in the server). As such 

2

1
( ) ( 1)(1 )

1
n

n
Q np

r
r r

r
¥

=
= - - =

-å  

Therefore 

( )
(1 )

wp

r
m r

=
-
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o We know consider the more difficult problem of deriving the probability 

distribution of waiting times, ( )w xp > . Once again, recall w is the wait time 

experienced by a random job entering the queue. 

( ) ( ) ( ) ( )
( )

1

1

0

(1

0

| )

|
k

k

k

w x w x X k

w x X k

X X kp p p

p r r

¥

=
¥

=

> = ⋅ > =

=

+

>

= =

-=

å
å

   


 

Now, note that since the exponential distribution is memoryless, we can write 

( )


Processing timeRemaining time
for the 1 otherfor job currently jobs waitingin server

1

1
| Erlang( , )

k

k

d k j dj
w X k S S k m

-

-

=
= = + =å


 

(the Erlang distribution is the distribution of the sum of exponential variables; it 

is a special case of the Gamma distribution). As such 

1

1

1
1

1

0

(1 )

( )
( ) (1 )

( 1)!
( )

(1 )
( 1)!
( )

(1 )
!

(1 )

x k
k

w k

k
x k

k

k
x

k

x

e x
f x

k
x

e
k

x
e

k
e

m

m

m

m r

m m
r r

m
m r r r

m r
m r r

rm r

- -
¥

=

-
¥- -

=

¥-

=

- -

= -
-

= -
-

= -

= -

å

å

å

 

And so 

( )exp (1 ) with prob 
~

0 1
w

m r r
r

ìï -ïïíï -ïïî
 

And 

( ) (1 )xw x e m rr - -> =  

 The M/G/1 queue 

o  We now consider a slightly more general case in which the time between arrivals 

{ }n
t  are exponential, but the processing times { }n

S  now follow a general 

distribution. This complicates matters slightly, because X(t) – the amount of 

work in the system – is no sufficient enough to totally describe the state of the 

system at time t. We also require R(t), the residual processing time of the work 

currently in service. (This was not the case when processing times followed a 

memoryless exponential distribution). 
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o To sidestep this complication, we will consider the following embedded Markov 

chain Xn. Let Tn be the time at which the nth job concludes processing, and 

denote 

th

Number of jobs in the system
( )

immediately after the  job as departednn
X T X

n+ º º  

We then have 

( )1 1
1

n n n
X X A

+

+ += - +  

Where An + 1 is the number of arrivals during the processing time of the (n + 1)th 

job. In this case, by assumption, the An are IID, and ( ) ( )| ~ Po
n n

A S s sl= , 

where l  is the rate of arrivals. 

o Now, using the ergodic theorem for DTMCs (and assuming we have stability; ie: 

1r < ), we have 

( ) ( )
n n

X j jp¥=   

Furthermore, from the G/G/1 case, we know that for each sample path, 

*( )
t

X t X=  exists, which implies that 

( ) ˆ( ) ( )
t

X t j jp¥=   

The challenge now, however, is to prove that ˆp p= . 

o Theorem: ˆp p=  

Proof: Define the following two processes: 

( ) Number of arrivals in [0, ) that "find" the system in state 

( ) Number of arrivals in [0, ) that "leave" the system in state 
j

j

A t t j

D t t j

=
=

 

Also let A(t) and D(t) be the total number of arrivals and departures up to time 

t, respectively. We now derive or quote a number of seemingly unrelated facts 

and then combine them to prove our result 

1. For any given sample path w , it is clear that 

( ) ( ) 1 0
j j

A t t tD £ " ³-  

This is because Aj(t) is the number of “up-crossings” of X(t) over the line 

X(t) = j whereas Dj(t) is the number of “down-crossings”. Since the path 
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is continuous, every up-crossing must be followed by a down-crossing, and 

so the difference in numbers will be at most 1. 

2. Using the ergodic theorem of Markov Chains, we have 

{ }1

( ) 1
lim lim ( ) a.s.

( ) k

nj

t n k X j

D t
j

D t n
p¥ ¥ ==

= =å 1  

(The first equality follows from the fact that Xk is precisely the state of 

the system after the kth departure). 

3. Using the bound in (1), we have that ( ) 1 ( ) ( ) 1
j j j

D t A t D t£ £ +- , so 

 ( ) by (2) ( ) by (2)
1 1

( ) 1 ( ) 1( ) ( )( )

(( ) ( ) ( ) ( ))

j j

jj j
A t

A

D t D tD t D t

A t D t D t A tt

p p 
 

- +
£ £ ⋅

 

 

And so 

( )
( ) a.s.

( )
j

A t
j

A t
p  

4. Letting tk be the time of the kth arrival, we have 

{ }(1 )

( ) 1
lim lim

( ) k

nj

t n tk X j

A t

A t n¥ =¥ =
= å 1  

5. A well-known property of queues with Poisson arrivals is PASTA 

(Poisson arrivals see time averages – see addendum at the end of this 

lecture). 

{ } { }0 ( ) )1 (

1 1
lim lim d

k

t

X s j X j

n

t n k tt
s

n¥ ¥ == =
= åò 1 1  

where tk is the time of the kth arrival to the system. Effectively, this states 

that in working out the average work in the queue, we don’t need to 

sample at every time-step; it is enough to sample at arrivals. 

6. By the ergodic theorem for Markov Chains 

{ }.a. ( )s 0

1
ˆ( ) l m di  

t

t X s j
j

t
sp ¥ =

= ò 1  

7. Finally, combine all the above 
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{ }



{ }





(6)

a.s. 0
(5)

1

(4

( )

( )

)

(3)

a.s.

1
ˆ( ) lim

1
lim

( )
lim

( )

 d

( )

k

t

t

n

n k

j

t

X s j

X t j

j
t

n

s

A t

A t

j

p

p

¥



=

¥ =

¥

=

=

=

=

=

ò

å

1

1
 

Which proves the required result.  

o Example: We can use this result to derive the Pollaczek–Khinchine formula for 

the average waiting time in a M/G/1 queue. First, consider that by the above 

ˆ
( )

n
X t Xp p
é ù é ù=ê ú ê úë û ë û   

Recall further that 

( ) ( )1 1
1 | ~ ( )

n n n n n
X X A A S s Po sl

+

+ += - + =  

We can write this as follows 

{ }

{ } { }

1

11

1 1

1

( 1)
n

n n

n n nX

n nX X

X A

X A

X +³

+³ ³

+ +

=

= -

- +

1

1 1
 

And 

Squaring this expression, we obtain (we simply denote { }1nX ³
º1 1  to save space) 

2
1 1

2 2
11

2 2 2
n n nn nn n

X X A AX AX ++ + +-= + + - +1 1 1 1 1  

As such 

( ) ( )2 2

1 1 11

22 2 2
nn n n nn n

X XX AX A Ap p + ++ += - + + - +1 1 1 1 1   

We can begin by simplifying the expression above by noting that 

{ }( )1n
n X

Xp ³
= 1  

 

And so 

{ } { }

( )
2 2 2

1 1 1 11 1

2
1

1

1 1

2 2 2

0 2 ( ) 2 ( ) 2 ( ) ( )

 add indicator 0, same

n n
n n n n n nX X

n n n

n
A X A X A

A X A A X

X Xp p p

p pr r
+ + + +³ ³

+ +

+

+

+ + - - +

= + - - +

 ³

=   
    
1 1 1 1 1
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Note that 

1
2 2

1 1

( ) ( | ) ( )

ar( ) ar( | ) ar+([E(A|S))))= ( ) ar( )
s

A A S S

A A S S S

l r

l l r l s

é ù= = =ê úë û
é ù= + + = +ê úë û

   
       

So 

2

2

2 2 2

2 2

2 2 2

( [ ])

2

2 2 2 2

2

(1 ) 2

0 2 2

2

2(1 )

2 ( )

2(1 )
2 (1 )

2( )

2

2

1

s

s

E S

s

s

X

X

S
X

X X

CV
X

p p

p

p

s

p

p

r r l s r

r r l s

r r l s r r r

r
r r l

r
r r

r

- = + +

+ +
=

-

+ +
=

-
+ +

=

= + + + - - +

-

 









 

For M/M/1, CV = 1, so back to expression above. 

 

{ } ( )11
( 1) ( 1) 1 ( )

XX
w X X X X Xp p p p p pl r+

³³
= - = - -= - ³ =     1 1  

 

Plugging in from the above 

 

2 2 2 2(1 ) 2 (1 )

2(1 ) (1 ) 2 (1 )

CV CV
wp

r r rr
r m r m r

l
+ + +

= = +
- - -

  

 

All true only if we know the expectation of X2 exists. Thus, out that 

3 2( ) XS p<¥  <¥  , this is excessive because we took the simpler way to 

prove it. Really, all we need is the second moment. Easy approach to problem 

leads to an excessive condition. 

 

Pillache-kinchin formula. The steady states being equal doesn’t usually happen. 

 Addendum on PASTA 

o The principle of PASTA (Poisson Arrivals see Time Averages) states that for any 

stochastic process X(t) over a state space  , and for any A Í   

{ } { }( )1 0 ( )

1 1
lim lim  d

k

tn

X t An Xtk s An t
s¥ ¥ Î= Î

=å ò1 1
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provided the tk form a Poisson process – in other words, 
1
~ exp( )

k k
t t l-- . This is 

really quite a surprising result! The RHS has full information and sees the system 

at all times. The LHS only sees it at a selection of times. 

o For an intuitive proof, write A(t) = cumulative number of samples up to time t. 

the statement above can then be written as 

{ } { }0 ) )0( (

1 1
lim lim

( )
 d ( )  d

t

X s A X s A

t

t tA t t
A s s

Î Î¥ ¥=ò ò1 1  

Now, write 

{ } { }

{ }

{ } ( )

( ) ( )

( )

0 0

0

1

 d ( )  d

 d ( )

( 1)

(

( )

)

k

X s A X s A

X s A

n

X Ak

t t

t

A s s

A s

A A k

M

k

t l
Î Î

Î

Î=

=

» + -

-

=

ò
ò
å

ò


 

1 1

1

1

 

Where d ( ) d ( ( ) ( )) dA s A s s A t A t tl l=  =- -  . This is a martingale, because the 

increments d ( )A s  are independent (by the “independent increments” property of 

Poissons processes) and mean 0 (because of our normalization). Furthermore, the 

conditional increments are uniformly bounded (since they are counts). As such
( ) 0 a.s.M t

t
  In other words, 

{ } { }( 0 ( )0 )
 d (

(
)  d

) 1 1
lim lim

( ) X s At t X

t t

s A
A

A t

t A t
s

t
s

l ¥Î Î¥ =ò ò1 1  

Finally, use ( )lim A t

t t
l¥ =  to conclude that the first term converges to 1. This 

gives the required result. 

LECTURE 10 – 30TH MARCH 2011 

Renewal & Regenerative Process 

 Renewal processes 

o Let { }n
X  be IID, with 

1
( )X m= <¥  and ( )1

0 1X = < . Let 
1

n

n ii
S X

=
= å , 

with S0 = 0. Let { }( ) s :p 1u
n

N t n S t³= £ . { }( : 0)N t t ³  is called a renewal 

process. 

o Definition (renewal function): The renewal function is defined as 

[( ]) ( )m Nt t=  . 
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o Example: Let 
1
~ exp(1 / )X m . { }( : 0)N t t ³  is then a Poisson process. Consider, 

incidentally, that in a Poisson process, the following two facts are true. Much of 

our work in this section will be concerned with generalizing these results to 

general renewal processes: 

 
1

( ( )) ( ) ( )N t m t t X tm= = =   (generalizes to the elementary renewal 

theorem). 

 
1

( )( )m t Xm¢ = =   (generalizes to the key renewal theorem).  

o Proposition: 
1

( ) ( )
nn

m t F t
¥

=
= å , where ( )( )

nn
F t S t= £ . 

Proof: Note that 

{ }

( )
1

1
[ (

( )

)]
nn S t

nn
N t S

t

t

N
¥

= £

¥

=

=

= £

å
å 

1
 

Where, in the last line, we used Fubini I.  

Remark: The CDF of Sn is the n-fold convolution of the CDF of each individual 

variable X. 

1 1 1

 fold

( ) ( ) ( ) ( )
n

n

F F F F⋅ = ⋅ * ⋅ * * ⋅
 




 

For example, 

2
( ) ( ) d ( )F t F t n F n= -ò  

 Laplace Transforms & Co. 

o The Laplace Transform of a function of a distribution with CDF F(x) is defined 

as 

0 0

ˆ( )  d ( ) ( ) dsx sxF s e F x e f x x
¥ ¥

- -= =ò ò  

A few important results: 

 Laplace transform of convolutions. In CDF form, if F A B= * , then 

ˆˆ ˆ( ) ( ) ( )F s A s B s=  

 Note that if f is a density function, then 

0

ˆ( )  d ( ) 1sxF s e F x
¥

-= <ò  

o Together, the points above imply that 
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1

ˆ( )ˆˆ( ) ( )
ˆ1 ( )

n

n

F s
m s F s

F s

¥

=
= =

-
å  

Similarly, re-arranging 

ˆ( )ˆ( )
ˆ1 ( )

m s
F s

m s
=

+  

As such, there is a one-to-one correspondence between F and m. 

o Theorem: If b(t) is bounded on any interval, then the solution to the following 

renewal equation 

0
( ) ( ) ( ) d ( )

a b a F

a t b t a t s F s
¥

= + *

= + -ò  

is 

0
( ) ( ) ( ) d ( )

t

s
a t b t b

a

t

b

s

b

s

m

m
=

= + *

= + -ò
 

Verification: Taking the Laplace transform of the first equation 

ˆ ˆˆ ˆ( ) ( ) ( ) ( )a s b s a s F s= +  

As such 

ˆ ˆ ˆ( ) ( ) ( )ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )
ˆ ˆ1 ( ) 1 ( )

b s b s F s
a s b s b s b s m s

F s F s
= = + = +

- -
 

Taking an inverse Laplace transform of the proposed solution, we do indeed find 

this equation is satisfied.  

o Example: Consider that 

1
1

0
( ) |

1 ( ) ( ) |

0

1 ( )

x t
N t X x

N t N x X x x t

x t

m t x x t

ìï >ïïé ù= = íê úë û é ùï + - = £ê úï ë ûïî
ìï >ï= íï + - £ïî

 
 

However, 
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10

0

0

( )

1 ( )

(

 d ( )

( ) ( ) d ( )

(

)

( ) |  d

)

(

( )( )

)
t

t

N t

N t X k F x

m t

m t x F x

F t m t x F x

F t m F t

¥

=

=

é ù= + -ê úë û

é ùê úë û
é ù=ê úë

= + -

= + *

ûò
ò

ò




 

This equation is in the form of a renewal equation, with b = F. The solution is 

therefore 

 
0

( ) ( ) ( ) d ( )
t

s
m t F t F t s m s

=
= + -ò   

o Example: Let us consider the example ~ exp(1 / )X m  and 

d( d) ( )m tm t t t mm=  = . Thus, the solution to the standard renewal equation is 

0 0
( ) ( ) ( ) d ( ) ( ) d

t t

s s
a t b t b t s s b t b s sm m

= =
= + - = +ò ò  

For the integral to be finite, we need ( ) 0b t  . As such, we might expect that 

0
( ) ( ) d as 

t

s
a t b s s tm

=
  ¥ò  

It turns out this last conclusion holds generally, not just for Poisson processes. 

 Some Theorems 

o Proposition (SLLN for renewal processes) 

1
( )

( ) 1
a.s. as 

N t
t

t X
  ¥


 

Proof: Consider that 
( ) ( ) 1N t N t

S t S +£ £ . As such 

( ) 1

1 a.s.

( ) ( ) 1

( ) ( ) 1 ( )( )
NN t t

S N tt

N t N t N t

S

N t
+



+
£ £

+ 
 

However, by the SLLN, 
1

( )nS

n
X  . Feeding this into the above proves our 

theorem.  

o Proposition (Elementary/Baby Renewal Theorem): 

1

( ) 1
as 

( )

( )

N t

X

m t
t

t t

é ùê úë û=   ¥



 

Proof: See homework 4. 

o Proposition (CLT for renewal processes): Suppose that 2
1

ar[ ]X s= <¥  
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3/2
1

1

1
(0,

(
1)

( ) ( )

) 1N t
t

t
N

X X
s

æ ö÷ç ÷ç - ÷ç ÷  é ùê úë
è

û
÷ç ø 

 

Or in other words 

3/2
1

1

(0,1)
( ) ( )

( )
t

t t N
X

N
X

s
» +

é ùê úë û
 

 

Proof: Throughout this proof, we will write 
1

( )X m= . 

1. Step 1: We first show that 

(
3/2

)

( ) 1 1
(0,1)

N t

N

S
N

t
t s

m m

æ ö÷ç ÷ç - ÷ç ÷ç ÷÷çè ø
  

We do this as follows: 

( )

( ) ( )

( )

( )

( )

( )

( )

(

( ) 1
1

/ ( )

1

/ ( )

1 1
( )

( )

)

/ ( )( )

N t

N t N t

N t

N t

N t

N t

SN t t
t

S S N t

St

S N

N t

N t

N t

t

St
N t

N t S N t

m m

m m

m
m

m
m

 

æ ö æ ö÷ ÷ç ç÷ ÷ç ç- = -÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
æ ö÷ç ÷ç= - ÷ç ÷ç ÷÷çè ø

æ ö÷ç ÷ç= - ÷ç ÷ç ÷÷çè ø 

 

Now, consider the last term – since ( )N t  ¥ , it is a subsequence of 

( )nS

n
n m- . This latter expression does tend to (0,1)Ns  in distribution, 

by the standard CLT. The question is whether the weak convergence also 

holds for the subsequence. To answer this question, we will require a side-

lemma. 
 

Lemma (Ansombe’s Lemma/random time change 

lemma): If { }n
Z  are IID with mean 0 and 2 2

1
( )Z s= < ¥  and 

{ }( : 0)N t t ³  is an integer valued process such that 

( ) (0, )N t

t
b Î ¥ , then 

( )

11
(0,1

)
)

1

(

N t

i
Z

N
N

t
s

=
å  
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In other words, we require our random sequence to converge at 

linear linearly to infinity for convergence in distribution to hold. 

Intuitively, this is because we need variances to accumulate fast 

enough for the CLT to be valid. 
 

In this case, note that 

1
(

( ) 1
s

)
 a. .

X

N t

t



 

This implies that 

( )
1

1

(

)

)

(N t

t X
b =


 

Hence, the Ansombe’s Lemma applies. We can then use the converging 

together Lemma on the expression quoted above to obtained the desired 

result for this step. 

Step 2: We now use step 1 to prove our result. Consider that

( ) 1

1 a.

)

s

(

.

( ) 1

( ) ( ) 1 (( ) )
N t N t

S N tt

N t N t N t

S

N t
+



+
£ £ ⋅

+ 
 

Both sides of the “sandwich” are in the form used in step 1. Therefore, 

this immediately leads to the desired result.  

o Definition (Lattice/Arithmetic distribution): A distribution F is said to be 

of Lattice-type if there exists an 0h >  such that F is supported on 

{ } { }:
n

X nh n= Î   

For example, the Poisson distribution is lattice with h = 1. 

o Theorem (Blackwell’s Theorem): If F is non-lattice, then 

1

1
( ) ( ) a

( )
s m t a m

X
t a t+ -  ⋅  ¥


 

For all a > 0. 

Remark: This result is not implied by the fact 
1

( ) 1
( )

m t

t X
  , because this theorem 

concerns increments in the renewal function m. 

o Definition: A function :f + +   is directly Riemann integrable (dRi) if 
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0

( ) d
n
f x x

¥
<¥ò  

 
00 0

( ) d ( ) d 0
n n h
f x x f x x

¥ ¥

- ò ò  

Where 

{ } { }

{ } { }

[ ,( 1)

[ ,( 1)

0

0

( ) sup ( ) :

( ) i

( 1)

(nf ( ) : 1)

x kh k h

x kh

n k

n k k h

f x f x kn

f

x k n

x kf x kn nx

Î +

Î +

¥

=
¥

=

£ £ +

£ £

=

= +

å
å

1

1
 

Direct Riemann Integrability can be thought of as an extension of Riemann 

Integrability over an infinite line, as opposed to over an integral. 

Remark: If :f +   , we simply require both f+ and f– to be dRi for f to be 

dRi. 

Remark: Any of the following conditions are sufficient for :f +    to be dRi 

 f is continuous with compact support. 

 f is bounded and continuous, and 

0
( ) d

h
f x x

¥
<¥ò  

for some h > 0. 

 f is non-increasing and 
0

( ) df x x
¥

<¥ò  

o Theorem (Key Renewal Theorem): Providing the usual assumptions on F 

holds (IID increments with finite mean that are not masses at 0) and that the 

renewal process is non-lattice, then for any :b +    that is dRi 

0

1
( ) ( ) da t b s s t

m

¥
  ¥ò  

Where a is a solution to renewal equation a b a F= + * . 

LECTURE 11 – 6TH APRIL 2011 

 Regenerative processes 

o A regenerative process is a stochastic process with time points at which, from a 

probabilistic point of view, the process restarts itself. A good example is CTMC 

(for example, corresponding to an M/M/1 queue). We consider that the process 

“resets” each time the queue empties. 
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o Definition: Let ( )( : 0)X t t ³  be a stochastic process with a sample path that is 

right-continuous with left limits (RCLL or CADLAG). Without loss of 

generality, we let the renewal occur at ( ) 0X t = . Now, define the following 

quantities: 

 { }( ) : ( ) 0, ( )inf 0( 1) n X t X tn tt t -³+ = ¹= , the time of the nth renewal. 

 
1

( 1) ( )
n

n nt t t+ = + - , the inter-renewal time. 

 
( ) [0,( ]1)

( )
n

n

n
X n t t

X t
t

t
t
tìï - +ïï= íï D >ïî

Î

ï
 , where D  is outside the state 

space of X. 

Then X is said to be regenerative if 

  a.s. 
n

nt < ¥ "  

 ( )  as n nt  ¥  ¥  

 
0 1
, ,X X    are independent 

 
1 2
, ,X X   are identically distributed (the first renewal might have a 

different distribution if the system doesn’t start “empty”). 

o Example (CTMC): Let ( )( : 0)X t t ³  be a CTMC with state space =  . We 

can then define a renewal process using any state x Î   as our “renewal state”. 

Our only requirement is that x be at least null recurrent; we must return to the 

state infinitely often.  

o Example (DTMC): Let ( )0:
n

X n ³  be a DTMC on =  . We can then 

define a renewal process using any state x Î  , provided the chain is irreducible 

and recurrent.  

o Definition (recurrence): A regenerative process is positive-recurrent if 

1
( )t <¥  and null-recurrent otherwise. 

o Proposition (SLLN for regenerative processes): Let ( )( : 0)X t t ³  be a 

regenerative process over a state space   with 
1

( )t <¥ , and let :f    be 

such that 

( )
(1)

(0)
( )  df X s s

t

t

æ ö÷ç <¥÷ç ÷çè øò  
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Then 

( )
( )

(1)

0

(0)

1

1
( )

( )  d
 d  a.s. a

(
s 

)

t

f X s
f X s s

s t
t

t

t

t

æ ö÷ç ÷ç ÷çè ø
  ¥

ò
ò




 

Proof: Let 

( )
( )

( 1)
( ) ( )  d

k

k k
Y f f X s s

t

t -
= ò       and      { }( ) s :p 0u

n
N t n tt³= £  

This means that we can write 

( ) ( )
( )

( )

00 ( )
( ) ( )  d ( ) ( )  d

t tN t

kk N t
c t f X s s Y f f X s s

t=
= = +åò ò  

As such 

( )
( )

( )0

1 ( )

( )( ) 1 1
( ) ( )  d

tN t

kk N t

Y fc t
Y f f X s s

t t t t t=
= + +å ò  

By the assumption in the theorem, Y0(f) is finite, and so the first term vanishes 

in the limit. Now 

( ) ( )

1 1

( )1 1
( ) ( )

( )

N t N t

k kk k

N t
Y f Y f

t t N t= =
=å å  

Note, however, that the Yi(f) are IID. Furthermore, 

( ) ( ) ( )
( ) (1)

( 1) ( )0

)

)

(1

(0
( )  d( ) ( )  d ( )  d

k

k k
f X s sY f f X s s f X s s

t

t

tt

t t-

æ ö÷ç£ <¥÷ç ÷çè
= =

øò ò ò     

by assumption, and so we can use the SLLN (since ( )N t  ¥ ), and the SLLN 

for renewal processes to write the above as 

( )1 1

)

1

(
( )

1 1
)

( )
(

N t

kk
f

t
Y fY

t=
=å 


 

Precisely as required. All we now need to do is to show that the last term 

vanishes. 

( )
( )

( )
( )

( )
( )

( ) ( )

( )

1 1
( )  d ( )  d

( )  
( ) 1

( )
d

t t

N t N t

t

N t

f X s s f X s s
t t

f X s s
N t

t N t

t t

t

£

£

ò ò

ò
 

We now use the following Lemma. 
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Lemma: If { }n
a  is a real-valued sequence such that 1

1

n

in i
a a¥=

å , 

then { }1
1

max 0
i in n

a£ £   as n  ¥ . 

 

Notice that ( )( )1
a.s.( ) 11

) (( )
N t

kN t k
Y f Y f

=
å  , since ( )N t  ¥ . As such, 

{ }1
1( )) (

max ( ) 0
K N t kN t

Y f£ £  . As such 

( )
( )

{ }1 ( ) 1

(
1

)

max ( )( ) 1
0 a.s.

( ) ( )

1
( )  d K N t kt

N t

Y fN t

t Nt t
f X s s

t t
£ £ +£ ⋅  ⋅ò 

 

As expected.  

o We have just proved that ( ) ( )1

1

1
a.s.

(

( )0

)
( )  d

ft

t

Y
f X s s

t
ò


 . This suggests that 

( ) ( )1

1

( )

( )
( )

Y f
f X sp t
é ù =ê úë û


 . 

o Proposition (CLT for regenerative processes): Let ( )( : 0)X t t ³  be a 

regenerative process on a state space   with 2
1

( )t <¥ . Let :f    be a 

function satisfying ( )2
1
(| |)Y f <¥ . Then 

( ) ( ) ( )1

1

0
( )

0,1
( )

( )  d
t

f X s s
t

t

Y t
Ns

t

æ ö÷ç ÷ç ÷ç ÷-ç ÷ç ÷÷ç ÷ç ÷çè



ø

ò 


 

With ( )2

1

2

1
( ) / ( )

c
Y f ts =    where 1

1

( ( ))

( )
( ) ( )

Y f

c
f f

t
⋅ = ⋅ - 

 . 

o Theorem: Let ( )( : 0)X t t ³  be a positive recurrent regenerative process on a 

state space dS Í  . Suppose that either of the following conditions hold 

 ( )1
( )x xF t= =  has a density and there is a function : dh    that 

is bounded 

 ( )1
( )x xF t= =  is non-lattice and there is a function h that is bounded 

and continuous 

Then 

(1)

(0)

1

( ( )) d
( ( )) as 

h X s s
h X t t

t

t

t

é ù
ê ú
ê úë ûé ù   ¥ê úë û é ùê úë û

ò



 

Then 

( )  ) as( X tX t  ¥  ¥  
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and 

( )
{ }

(1)

( )(0)

1

 d
( )

X s A
s

X t A

t

t

t

Î

é ù
ê ú
ê úë ûÎ =

é ùê úë û

ò




1
 

Remark: If (0) ( )
d

X X= ¥ , then ( )( : 0)X t t ³  is stationary. 

Proof: Fix t > 0, and suppose (0) 0t =  (without loss of generality). 

1 1

10

0

0

( ( ))

( ( )), ( ( )),

( ) ( ( )) |  d ( )

( ) ( ( (1) ))  d ( )
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=
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(Where, in the last step, we have used the fact that every cycle has the same 

distribution). As such 

0
( ) ( ) ( ) d ( )

t

a t b t a t s F s

a b a F

= + -

= + *
ò  

Now, consider that 

( )
1

1 1
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Where g(t) is bounded and continuous and non-increasing and 

0 1
( ) d ( )g t t h t

¥

¥
= <¥ò   finite. As such, by the conditions for direct 

Reimann integrability, we have that g is dRi. Now, if b g£  and g is dRi, then b 

is dRi. And since F is non-lattice, all the conditions of the key renewal theorem 

hold, and therefore 
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0
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Where the last step follows by Fubini, since h is bounded. Now, since h is any 

bounded function, the above implies that )( ()X t X ¥ , and finally, taking 

{ }  
( )

xx
h

⋅ =
⋅ = 1 , we recover the last required statement. 

o Example: Let ( )( : 0)X t t ³  be a positive recurrent regenerative process. Fix a 

set A SÎ , and let 

{ }( ) inf 0 : ( )X t AT A t ³ Î=  

Again, for simplicity, assume (0) 0t = . We are now interested in the expression 

( )( ) ?T A t> = , especially for t large. For t > 0, note that 

( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 1

1 10

1 1 10

1 1 10

( )

( ) , ( ) ,

( ) ( ) ,  d

( ) ( ) , ( ) |  dF
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)

dF

(

t

t

t

T A t

T A t t T A t t

T A t T A t s s

T A t T A t T A s s

T A t T A t s T

t

A s s
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t t

t t

t t t

t t t
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= > > + > £

é ù=  > + > =ê úë û
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Where { } { }( ) inf (1), 0( , ( (1))) infT A t X At t X t Att Î ³ += > = Î . Now 
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1 1 10

1
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Where 

( )1 1
| (( ) )s s T AF t t£= >   

So 

( )a b a Fb= + *  

For fixed l Î  , 

0

( )

0

0

( ) ( ) ( ) d ( )

( ) ( ) ( )  d ( )

( ) ( ) ( ) d ( ) d ( ) d ( )

t
t t t

t
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t
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l l l

l l
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l
l l l l l

b
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b

-
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Suppose  s.t.l$  Fl  is a bona-fide distribution. Then 

0
( ) 1  d ( )sF e F sl

l b
¥

¥ = = ò   
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( )1

0
 d ( )s Ze F esl lb

¥
- = =ò    

Assume there is such a solution *l  [can show using hyeristic argument]. By 

appealing to the key renewal theorem 

( ) ( )1

1

1 0

0
( )  d

 d (

1
(

)

) s T A s s

x F x

a t e t
l

l

l
l

l

t h
t

t

¥

¥

é ù >ê úë û =  ¥

= ò

ò 



 

And so 

{ }( )( ) ~ tT A ea t t lh ->=   

So the probability has an exponential type tail.  
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