Hypothesis Testing

If the statistic is > critical value or < - critical value, reject H_0 . Else, don't.

	H_0	Test statistic	Two-tailed		One-tailed		
Test type	(Null		и	Critical	и	Critical	Example
	hyp.)		Π_1	value	Π_1	value	
Single mean	$\mu = a$	$\frac{\bar{X} - a}{s / \sqrt{n}}$	$\mu \neq a$	~			
$n>30 { m or} {\cal N}$				$(1-\alpha)/2$	$\mu < a$ or $\mu > a$	$z_{1-\alpha}$	"A sample of <i>n</i> CBS students are found to have a mean IQ of \overline{X} with graphs atomicated deviation of a Test at the x_{1}^{W}
Single mean				+		+	A , with sample standard deviation of s. Test, at the $\alpha \gamma_0$ level, the statement that the mean IQ at CBS is a "
n < 30				$\nu_{n-1,(1-\alpha)/2}$		$\iota_{n-1,1-\alpha}$	
Difference	$\mu_{X} - \mu_{Y} = 0$	$\frac{\overline{X}-\overline{Y}}{s_{_D}/\sqrt{n}}$	$\mu_1 - \mu_2 \neq 0$	$z_{(1-lpha)/2}$	$\mu_1 - \mu_2 > 0$ or < 0	z_{1-lpha} -	"A sample of <i>n</i> CBS students are found to have mean IQ \overline{X}
between two							when they enter CBS, and mean IQ \overline{Y} when they leave.
means							Differences are calculated for each student and are found to
(matched)							the statement that an MBA doesn't alter IQ."
Difference		$rac{\overline{X}-\overline{Y}}{\sqrt{rac{s_X^2}{n_X}+rac{s_Y^2}{n_Y}}}$					"A sample of n_x CBS students are found to have mean IQ \overline{X}
between two							with standard deviation s_X . A sample of n_Y Wharton students
means							have \overline{Y} and s_Y . Test, at the α % level, the statement that
(indep.)							MBAs from CBS and Wharton have the same mean IQ"

For a test with test statistic z_0 , the two-tailed *P*-value is $2\left[1 - \mathbb{P}(Z \leq z_0)\right]$ and the one-tailed *P*-value is $\left[1 - \mathbb{P}(Z \leq z_0)\right]$ (replace Z with t_{n-1} for n < 30). Reject H_0 if the *P*-value is $\leq \alpha$.

 $Questions,\,corrections-email~guetta@cantab.net$