Confidence Intervals

	Mean	Proportion
Single group	"A sample of n CBS students reported their starting salaries after graduation. The resulting sample mean was \bar{X}, and the sample standard deviation was s. Find an $\alpha \%$ confidence interval on the population mean starting salary after graduation" $\bar{X} \pm z_{(1-\alpha) / 2} \frac{s}{\sqrt{n}}$ Important: If $n<30$, use $t_{n-1,(1-\alpha) / 2}$ instead of $z_{(1-\alpha) / 2}$, unless you know the data is normally distributed.	"A sample of n CBS students were asked whether they liked chocolate. A proportion \hat{p} of sampled students said they did. Find an $\alpha \%$ confidence interval on the population proportion of students that like chocolate" $\hat{p} \pm z_{(1-\alpha) / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ Important: in some cases, you will be asked to find the required n to obtain a certain level of accuracy, without being told what p to use. In these cases, use $p=0.5$.
Comparing two groups with matched measurements	"A sample of n CBS students took test 1 and test 2 . The sample mean for tests 1 and 2 were \bar{X}_{1} and \bar{X}_{2} respectively. For each student, the difference between the two scores was calculated, and these differences were found to have a sample standard deviation s_{D}. Find an $\alpha \%$ confidence interval on the population difference between the mean score on the two tests" $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm z_{(1-\alpha) / 2} \frac{s_{D}}{\sqrt{n}}$	N/A
Comparing two groups with independent measurements	"A sample of n_{1} CBS students from the class of 2012 took a test. Their sample mean score was \bar{X}_{1} and their sample standard deviation was s_{1}. A sample of n_{2} students from the class of 2013 did the same, with sample statistics \bar{X}_{2} and s_{2}. Find an $\alpha \%$ confidence interval on the population difference between the mean performance of their two classes" $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm z_{(1-\alpha) / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$	"A sample of n_{1} CBS students from the class of 2012 were asked if their liked chocolate. The proportion that did like chocolate was \hat{p}_{1}. A sample of n_{2} students were taken from the class of 2013, and the proportion there was \hat{p}_{2}. Find an $\alpha \%$ confidence interval on the population difference between the proportion of students from each class that like chocolate" $\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z_{(1-\alpha) / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$

