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OPTIMIZATION I 

Introduction – Lots of Geometry 

 Some definitions 

o Definition (Convex set): The set nÍ   if convex if for any 
1 2
, Îx x   and 

[0,1]l Î , 
1 2

( ) (1 )l l l= + - Îx x x  . Note that the intersection of a finite 

number of convex sets is convex. 

o Definition (Convex function): A function ( )f x  defined on a convex set 

nÍ   is convex if for any 
1 2
, Îx x  , the linear interpolation between those two 

points lies above the curve: 

( ) ( ) ( )1 21 2
(1 ) (1 ) [0,1]f ff l l l ll £ +- - Î+ x xx x  

 

o Definition (Cone): A set nÎ   is a cone if for all Îx   and any 0l ³ , 

l Îx  : 

 

1


2


2
x

1
x
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The set { }0,: , ,n n m mA A ´Î = ³ Î Îx x a a a    is the cone generated by the 

columns of A. 

o Definition (extreme point): An extreme point of the convex set   is a point 

Îx   that cannot be written as a convex combination of other points in  . 

 

o Definition (Convex Combination): A convex combination of points 
1

,,
k

x x  

is a point 
1

k

i ii
l

=
= åx x , such that 0³l  and 

1
1

k

ii
l

=
=å . The set of convex 

combinations of a set points is the smallest convex set containing all the points; 

it is called the convex hull of these points. 

o Definition (Hyperplane): The set { }: , ,nn b bÎ ⋅ == Î Îa x ax     is 

called a hyperplane with normal a. The set { }:n b= Î £⋅x a x  is a closed 

halfspace, and   is its bounding hyperplane. 

o Definition (Afine set): A set n
a
Î   is an affine set if for all 

1 2
,

a
Îx x   and 

( , )l Î -¥ ¥ , 
1 2

( ) (1 )
a

l l l= + - Îx x x  . A hyperplane is an example of an 

affine set. Roughly speaking, an affine set is a subspace that need not contain the 

original. 

o Definition (Polyhedron): A polyhedron is a set which is the intersection of a 

finite number of closed hyperplanes. It is necessarily convex. If the polyhedron is 

non-empty and bounded (ie: there exists a large ball it lies inside of), it is called a 

polytope. 

o Definition (Dimension): The dimension of an affine set 
a
  is the maximum 

number of linearly independent vectors in 
a
 . 

o Definition (Supporting hyperplane): A supporting hyperplane of a closed, 

convex set   is a hyperplane   such that ¹Ç Æ   and Í  : 

Extreme point

Extreme point

Not an extreme point
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o Definition (Face): Let   be a non-empty polyhedron and let   be any 

supporting hyperplane. The intersection Ç =    is a face of  . The whole 

polyhedron could be a face, if the   and   are both two-dimensional! For 

example, the thick line and the point in the example below are both faces of their 

respective polyhedra: 

 

We give special names to faces of particular dimensions: 

 

Another way of looking at the concept of a vertex is as a point Îx   that is 

such that there exists some c such that ⋅ < ⋅c x c y  for all Îy   and ¹y x . In 

other words, we insist Ç = = x   . This simply means that our face is 0-

dimensional, and the definitions are therefore equivalent. 

Face Dimension

Vertex 0 

Edge 1 

Facet d – 1 



1
 2
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 Polyhedra in standard form 

o The definition of a polyhedron above (in terms of the intersection of a number of 

half-spaces) can be written as { },: ,n m n mA A ´= £ Î Î Îxx b b   , where 

the rows of A contain the normals of the various hyperplanes defining the 

polyhedron. 

o It is often convenient, however, to write the polyhedron in an equivalent standard 

form { }: , ,,n m n mA A ¢ ¢´¢ ¢= = ³ Î Î Îx xb x 0 b   , where the rows of A are 

linearly independent. This involves a number of steps: 

 Re-write each inequality constraint row i
i

b⋅ £A x  as the equality 

row i
i i

s b⋅ + =A x , where si > 0. si becomes a new variable. 

 Eliminate any linearly independent rows in A (this does not alter the 

problem – see page 57 of B&T for proof). Note that this implies that, in 

standard form, m < n – in other words, the number of constraints is less 

than or equal to the number of variables.) 

 Replace any unconstrained variables xi with two new variables 
i

x+  and 
i

x-

, both constrained to be positive, and add the constraint 
i i i

x x x+ -= - . 

[The validity of this step is not entirely obvious, but for the simplex 

method, it works]. 

 Algebraic Characterization of Vertices & Extreme Points 

o In the previous section, we provided definitions of vertices and extreme points. It 

would seem logical that the solution of a linear program should lie at one of these 

points. In this section, we see that these concepts are equivalent, and we develop 

an algebraic characterization of such points. 

o We present two characterizations – the first is in terms of polyhedra in non-

standard form, which is more useful to gain an intuitive grasp of the concept, and 

the second in terms of polyhedra in standard form, which we will use hereafter. 

o Theorem: Let { }: ,A A¢ ¢= ³ =x x b x b  be a non-empty polyhedron, and let 

Îx  . The following three statements are equivalent: 

1. x is a vertex 
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2. x is an extreme point 

3. All equality constraints are active at x, some of the inequality constraints 

are active, and out of all the constraints that are active at x, n of them 

are linearly independent [Note: we say the vectors 
i

a  are linearly 

independent if the system of equations 
i i

b⋅ =a x  has a unique solution 

(see p48 of B&T)]. 

Proof: See p50, B&T. 

o Theorem: Let { }: ,n A == Î ³x bx 0x  be a non-empty polyhedron in 

standard form, and let Îx  . Then the following three statements are 

equivalent 

1. x  is an extreme point of  . 

2. The columns of A corresponding to the strictly positive components of x 

are linearly independent. More precisely, there exists a subset   of 

columns of A that are linearly independent such that 0
i

x =  for all i Ï   

3. x is a vertex of  . 

At first sight, statement (2) in this theorem seems somewhat different to 

statement (3) in the previous theorem, because here, we talk in terms of columns 

of A (variables), whereas in the previous theorem, we talked in terms of rows of 

A (constraints). In fact, the two are equivalent; we discuss two ways of seeing 

this; the first in terms of the rows of A, and the second in terms of the columns: 

 The fact that all variables Ï   are equal to 0 already creates n -   

linearly independent active constraints. We need all remaining active 

constraints to include at least   also be linearly independent constraints; 

in other words, we need   of the rows of the matrix B to be linearly 

independent. Another way of saying this is that we need all the columns 

of the matrix B (there are   of them) to be linearly independent. 

 Another way of stating the constraint A =x b  is that we need to 

synthesize b from a non-negative linear combination of the columns of A; 

in the example of the diet problem, b is our requirement in nutrient-
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space, and the columns of A describe the nutrient-content of each food. 

We have to combine the foods to get our requirements. 
 

Now, if we find a group of columns that are linearly dependent, it means 

that they can be describes in terms of each other. In the diet problem, 

water, sugar, lemon and lemonade might form such a group, because it is 

possible, from 3 of these, to get all the nutrients available in the fourth 

item 
 

In that case, we must “standardize” the problem by having one of these 

variables set to 0 – otherwise, our problem is indeterminate. In the 

example of the diet problem, we must choose to leave out one of {water, 

sugar, lemon, lemonade}, because there is an infinite combination of these 

that will give us any combination of nutrients. 

Proof: We will prove 1 2 3 1   . We first define some general notation. We 

will be considering a point x in the polyhedron; we will define x  to be the 

strictly positive component of x, and x  to be those components that are 0. We 

will divide the columns of A correspondingly: 

0

0
A A A

æ ö>÷ç é ù÷ç= =÷ç ê ú÷ ë û=ç ÷çè ø

x
x

x



 

When we talk of other vectors y, y  will refer to those components of y 

corresponding to those in x , and similarly for y . 

 1 2  Assume 2 is false, and let x be an extreme point. Our assumption 

that 2 is false implies that there exists a w  such that A =w 0 . Thus, it 

is true that ( )A e+ =x w b , for all e . However, since x  is strictly 

positive, we can always find e  small enough, say e+  and e- , so that 

0e ³x w . 
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Now, let ( ) 0=w w


  and set e+¢ = +x x w , and e-¢¢ = -x x w . We 

have that ,¢ Î¢¢x x  . However, 1 1
2 2

¢ ¢¢= +x x x . This means that x is not 

an extreme point. 
 

Thus, by the contra-positive, 1 2 . 

 2 3  Choose a point Îx   that satisfies 2. We would like to show 

that there exists a supporting hyperplane   to the polygon   such that 

Ç = x  . 
 

We postulate that the hyperplane { }: 0n= =Î ⋅x c x  satisfies this 

requirement, where 

0
vector of 1's

æ ö æ ö÷ ÷ç ç÷ ÷ç ç= = =÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

c
c e

c e
 

Now, let’s do the proof step-by-step: 

 Îx   We have 

0
0

æ ö æ ö÷ ÷ç ç÷ ÷ç ç⋅ = ⋅ = ⋅ =÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

x
c x c x

e x
 


 

 Í   Consider any { }\Îy x . We have 

0æ ö æ ö÷ ÷ç ç÷ ÷ç ç⋅ = ⋅ = ⋅÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

y
c x e y

e y



 

But since Îy  , we must have ³0y . Thus, 0³⋅c x . 

 Ç = x   Imagine Î Çy   . This means that 0⋅ =y c , but 

since all the components of y are positive (since it in the 

polyhedron), the only way this can happen is if =y 0 . 

Furthermore, since y is in the polyhedron, A =y b . Thus 

( ) ( )
A A

A A A A

- =

- + - =

x y 0

x y x y 0    

We have already established that =y 0 , and by definition, =x 0  

( )A - =x y 0  
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By assumption (2), however, this can only happen if 

=- ==  xx y0 xy y . 

 3 1  Choose a point Îx   that satisfies (3), and assume that (1) is 

not true; in other words, for some [0,1]l Î  and ,¢ Î¢¢x x  , we can write 

(1 )l l¢ ¢¢= + -x x x . 
 

Our assumption that x satisfies (3) implies that there exists a vector c 

such that ¢⋅ < ⋅c x c x  and ¢¢⋅ < ⋅c x c x . Now: 

(1 )

(1 )

(1 )

l l
l l
l l

é ù¢ ¢¢⋅ = ⋅ + -ê úë û
¢ ¢¢= ⋅ + -

> ⋅ + - ⋅
> ⋅

c x c x x

c x x

c x c x

c x

 

This is a contradiction. x cannot be on the line between ¢x  and ¢¢x  and 

also “below” both of them. 

o Note that the theorem above says nothing of how many variables the set   must 

contain. The case rank A m= = , however, is a natural choice, because the 

constraint A =x b  already includes m constraints, and 

 Choosing m>  is impossible, since A contains only m rows. 

 Choosing m<  would imply choosing more than n – m non-negativity 

constraints, which, in total, would result in more than n constraints. The 

resulting system would be over-defined, and might not have a solution. 

We therefore define… 

o Definition (Basis): A linearly independent set of m columns 

{ }1col col , , mBBA A  of A is a basis for the column space of A. [Note: if A contains 

no linearly independent rows, then rank A = m, and our definition boils down to 

the fact a basis is a maximally linearly independent set of m columns]. 
 

1co c ll o  ,, mBBB é ù= ê úë û
AA   is called the basis matrix and the associated vector of 

variables 
B

x  that solves 
B

B =x b  is called the vector of basic variables. Other 

variables (and columns of A) are called non-basic: 
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 of them

 of them
B

N

m
A B N

n m

æ ö÷ç é ù÷ç= =÷ç ê ú÷ ë û-ç ÷çè ø

x
x

x
 

x is called a basic solution. There is no guarantee, however, that solving 
B

B =x b  

will lead to x > 0. If it does, the solution is also called a basic feasible solution. 

o Definition (adjacent basis): Two distinct basic solutions are said to be 

adjacent if we can find n – 1 linearly independent constraints that are active at 

both of them. If two adjacent basic solutions are also feasible, then the line 

segment that joins them is called an edge of the feasible set. In terms of 

polyhedra in standard form, two bases are said to be adjacent if they share all 

but one basic columns. 

 Degeneracy 

o Definition (Degenerate vertex): A vertex x is said to be degenerate when 

more than n of the constrains are active at x. 

o Definition (Degenerate basis): A basic feasible solution x is said to be 

degenerate if some component of 
B

x  is 0. Otherwise, it is called non-degenerate. 

This is equivalent to the previous definition, because it implies that more than 

n m-  of the non-negativity constraints are tight at x. 

o For an example of degeneracy in a standard-form problem, consider the following 

problem: 

1 2 1

2

2

1 2 3

1 2 1 2

1 1

2 2

22 2 2

x

x

xx

x x

x

x

æ öæ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç =÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç

üï+ + = ïýï+ + = ç çè øè ø èï øþ
 

In this case, the polyhedron is simply the thick line in the figure below. Clearly, 

it only contains two vertices: 
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The vertex 2 2
3 3

(0, , )=x   is at the intersection of 3 planes; since there are three 

variables, it is non-degenerate. This corresponds to the basis matrix 

2 1

1 2
B

æ ö÷ç ÷ç= ÷ç ÷ç ÷çè ø
 

Clearly, each entry of x corresponding to a column in the basis is non-zero. 
 

The vertex (2, 0, 0)=x  , however, is at the intersection of 4 planes. It is 

degenerate, and corresponds to two different bases 

1 1 1 2

1 2 1 1
B B

æ ö æ ö÷ ÷ç ç÷ ÷ç ç= =÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 

In each case, one of the variables corresponding to a basic column is 0. 

Representation & Optimality 

 In this section, we prove what might be called the “fundamental Theorem of Linear 

Programming” – that the optimal solution of a linear program occurs at a vertex. 

 The Representation Theorem 

o Before proving our fundamental theorem, we prove that polyhedra can be 

represented in a very useful form. 

o Definition (recession direction): A recession direction of the polyhedron   

is a non-zero vector nÎd   such that, for any Îx  , 

{ }: ,q q + Î= + Îx x x d    

 

For a polyhedron in standard form, d is a recessive direction if and only if 

0A =d  (so that we remain feasible as we move along that direction), ³d 0  (so 

that we never become negative as we move along that direction) and 0¹d . 



x

d
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o Theorem (Representation): Any point { }: , 0AÎ º = ³x x b xx   can be 

written as 

0 01, ,i
i ii V

l a l l a+Î
= + ³ ³=åx v d  

where { }:i Vi Îv  is the set of vertices of the polyhedron and d is a recession 

direction. 

o Proof: We prove this by induction, on the number of strictly positive 

components in x . 
 

Suppose the theorem holds true if x has p – 1 strictly positive components, and 

consider an x with p strictly positive components. If x is a vertex, the theorem is 

trivially true. If x is not a vertex, the columns of A corresponding to the positive 

components of x are linearly dependent. This implies that there exists a ¹w 0  

such that 0
i

w =  if 0
i

x =  and A =w 0 . 
 

Now, consider points of the form ( )q q= +x x w . Clearly, ( )A q =x b  for all q . 

As we move along w, we will either hit a non-negativity constraint, or go on 

forever (if w is a recession direction). We consider these two cases: 

  has both +ve and ve components-w  In that case, we’ll hit a non-

negativity constraint. Let 

 q¢ = smallest positive q  such that ( )q¢x  has at most p – 1 strictly 

positive components. 

 q¢¢  = largest negative q  such that ( )q¢¢x  has at most p – 1 

strictly positive components. 
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Diagrammatically: 

 

We can then write 

( ) (1 ) ( )
q

m q m q m
q q

¢¢
¢ ¢¢= + - =

¢¢ ¢-
x x x  

But by the inductive hypothesis, the points ( )q¢x  and ( )q¢¢x  can be 

written as in the statement of the Theorem. Thus, so can x. 

  or ³ £0w w 0  In that case, we’ll hit a non-negativity constraint going 

in one direction, but we’ll go on forever in the other direction. Assume 

that ³w 0  [the other case is similar]. Let q¢  be the largest negative q  

such that ( )q¢x  has at most p – 1 strictly positive components. 

Diagrammatically: 

 

We can then write 

( )q q¢= +x x w  

But w is a recession direction (because A =w 0  and 0³w ) and by the 

inductive hypothesis, ( )q¢x  can be written as required. Thus, so can x. 
 

The “starting point” for the induction is somewhat difficult to find. It is 

tempting to use =x 0 , but this point might not even be in the polyhedron! It 



x

w

( )q¢x



x

( )q¢¢x

( )q¢xw
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turns out that an appropriate starting point is simply the point in the polyhedron 

with the smallest number of strictly positive components. This must be a vertex, 

because if it was not, we could carry out the steps outlined above and find a 

point with fewer strictly positive components – this is a contradiction. 
 

[Note that it is not always the case a polyhedron must have vertices – for 

example, the polyhedron { }2
11

, 1: 0x xÎ ³ £x   has no vertices. However, the 

non-negativity constrains of the standard-form polyhedron ensure there is at least 

one. 

 The Fundamental Theorem 

o Theorem (Fundamental Theorem of Linear Programming): If ¹ Æ , 

then the minimum min Î ⋅
x

c x  is either attained at a vertex of   or unbounded. 

Proof: We consider two cases: 

 Case 1 –   has a recession direction d such that 0⋅ <c d : in 

that case, the problem is unbounded, because for any Îx  , 

( )( )q q q⋅ = ⋅ + = ⋅ + ⋅  -¥c x c x d c x c d  as q  ¥ . 

 Case 2 –   has no such recession direction: in that case, consider 

any point Îx  . By our Representation Theorem, we can write 

i
i

l a= +åx v d , where 0, 01,
i

l al+ ³= ³ . We then have 

( )

( )
( )

min

min

i
i

i

v

i

i
i i

i
i v

l a

l

l Î

Î

£

£

⋅ = ⋅ + ⋅

⋅

⋅

= ⋅

å
å
å

c x c v c d

c v

c v

c v

 

Thus, the minimum is indeed attained at a vertex. 

Simplex 

 We have thus far established that the optimum of a linear program occurs at one of the 

vertices of the feasible region. We now consider the simplex algorithm, an efficient 

method of jumping for vertex to vertex while constantly improving the objective 

function. 
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 Representation in terms of emanating directions 

o Consider a polyhedron A =x b , where , m nA B N ´é ùúû Î= êë  , and a non-degenerate 

basic solution ( )ˆ ˆ ˆ,
B N

=x x x
  , where 1ˆ

B
B-= >x b 0  and ˆ

N
=x 0 . 

o Claim: Consider the matrix 

ˆ
ˆ

ˆ0 0 0
B

N

B N B N
M M

I I

æ ö æ öæ ö æ ö÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç= = =÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç çè ø è øè ø è ø

x b
x

x
 

The last n – m columns of M–1 (ie: from column m + 1 onwards) are the 

directions of the edges of P emanating from the basic feasible solution x̂ . 

Proof: Let jh  be the jth column of M–1. Using the fact that since there is no 

degeneracy, xB has M nonzero components, and so the row is clearly from the 

second half of the matrix above, we can write, for j > m: 

1 col 

1 1 1
1

th row0 1

j

j

j j j b

B

B B N B N
M e e e

I I j

-

- - -
-

-

æ ö- ÷ç ÷ç ÷çæ ö æ ö ÷ç- - ÷÷ ÷ç ç ç ÷÷ ÷ç ç= = = = ÷ç÷ ÷ç ç ÷÷ ÷ çç ç ÷ ¬÷ ÷ç ç çè ø è ø ÷ç ÷ç ÷ç ÷÷çè ø

A

h




 

 

Now, consider moving in the direction jh  by an amount q ; ˆ( ) jq q= +x x h . This 

point is still on the polyhedron, because 

( )1 col col 

col col 

( ) ( ) ( )

ˆ
B B N

j j

j j

A B N

B B

q q q

q q

q q

-

= +

= - +

= - + =

x x x

x A A

b A A b

 

Thus, 
j

h  is indeed an edge of P, and it clearly results from increasing only one of 

the xN. 
 

For a geometric interpretation, consider that the rows of M contain the vectors 

normal to every active constraint at the BFS, and that 

1
row col 

1 0 
i j

M I jM i- - = " ¹= m M . This means that our emanating edges 

(columns of M–1) are perpendicular to every normal vector save one (along which 

we’re trying to move): 
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For a final intuitive justification of this result, note that for a problem in 

standard form, each emanating edge jh  involves bringing one variable – say xj – 

into the basis and consequently changing the value of the other variables in the 

basis in order to keep A =x b  valid. Now, we established above that the 

constraint A =x b  can be viewed as taking a linear combination of the columns 

of A to “synthesize” b. Now, note that 

 If we increase xj by 1 unit, our “resultant vector” Ax increases by col jA . 

 If we change the basic variables by j
B

h , our “resultant vector” Ax 

increases by j
B

Bh . 

Now, it makes sense that these two changes should “balance out” so as to keep 

our “resultant vector” at b. Thus, col j j
B

B =-Ah . 

o Lemma: Given a BFS x̂ , every point PÎy  can be expressed as 

ˆ j
j

j m

y
>

= +åy x h  

Where jh  is the jth column of M–1, and where yj > 0 for j > M. 

Proof: Consider that 

( )
ˆ

ˆ ˆ( )
0

N N

B N A A
M

I

æ ö æ ö æ ö-÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç- = - = =÷ ÷ ÷ç ç ç÷ ÷ ÷-ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

y x 0
y x y x

y 0 y
 

And so 

1ˆ
N

M-
æ ö÷ç ÷ç= + ÷ç ÷ç ÷çè ø

0
y x

y
 

o Corollary: If x̂  is a BFS, then any point in P is contained in the polyhedral 

cone generated by the last n – m columns of M–1 

{ }1
ˆ| , 0 

n j
j jj M

P C j ma a
= +

Ì = = + ³ " >åy y x h  

Claim: We claim that 

1
a

2
a

1
h

1
0s =

2
0s =
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1. jh  are the “extreme” recession directions of C. 

2. jh  are the “edges” (1-dimensional faces) of C. [Hint: let 1M-=c s  and 

j
= -e es ]. 

3. If x̂  is a non-degenerate BFS, then jh  is an edge of P. 

 Background to the Simplex Algorithm 

o Consider linear program is min =z c x . The directional derivative of z with 

respect to x in the direction jh  is jc h . If it is greater than 0, the direction is 

“uphill”, and vice-versa. 

o We call 1 col j j
j B j

c B c-= ⋅ = - +c c Ah   the reduced cost of direction j. Practically, 

they can be calculated by 

 Solving 1

B
B-= cp   

 Setting, for j > m, col j
j j

c c= - ⋅Ap  

Geometrically: 

 p  is the particular linear combination of equality constraints that gives 

cB. 

 Each component col jA  is the amount by which a unit change in xj will 

“affect” each constraint. 

 Thus, col j⋅p A  is the resulting change in the objective when we move one 

unit along direction j. 

 Similarly, cj is the direct change resulting in a unit change of xj. 

o Theorem: If 0j
j

c = ⋅ ³c h  for all j > m, then the current BFS is optimal. 

Proof: Consider that any PÎy  can be written 

1

1 1

ˆ

ˆ ˆ

n j
jj m

n nj
j j jj m j m

y

y y c
= +

= + = +

= +

⋅ = ⋅ + ⋅ = ⋅ + ³ ⋅

å
å å

y x

c y c x c x xc c

h

h
 

Thus, the objective at any point is greater than at x̂ . 
 

This theorem has an interesting geometrical explanation, which we discuss below, 

when we motivate duality. 

 The Simplex Algorithm 
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1. Start with a BFS x . 

2. Compute the simplex multipliers p  by solving 
B

B cp= , and compute the 

reduced costs col j
j j

c c= - ⋅Ap  for all basisj Ï . 

3. Check for optimality: if 0 basis
j

j³ " Ïc , then the current solution is optimal. 

4. Choose a nonbasic variable to enter the basis; ie: choose a “downhill edge” from 

the set of downhill edges V along which to move (typically, the one with the 

smallest reduced cost): 

{ }: 0
j

q V j B cÎ = Ï <  

5. Compute qw  for all q by solving col q qB =Aw . Note that q j=-w h . If 0q £w , 

stop: -¥z  along qh . 

6. Otherwise, compute { }1
min : 0j

j
i m

x

iw
q w£ £= >  (to find the basic variable that 

should leave the basis). 

7. Update the solution and the basis matrix B. Set: 

i i

q

j j i

x

x x

q
qw

¬
¬ -

 

 The Full Tableau Simplex 

o The simplex algorithm outlined above is relatively inefficient, because it involves 

the inversion of the matrix B at each step. We therefore use a different form of 

the algorithm which constantly maintains and updates the matrix 1 |B A- é ùê úë ûb . 

Typically, this information is stored in a tableau containing an extra row: 

 

Or, in more detail: 

 

1 col 1 1 col nB B- -A A

 


 

,1

,

B

B m

x

x

  

1
       

n
c c  

B B
-c x

1B A- 1B- b
1

B
B A--c c   1

B
B--c b  
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[Note that the columns of the tableau corresponding to basic variables will 

contain the columns of the identity, because B–1B = I]. We describe the 

operations involved in simplex in terms of the matrix a: 

 

o Set up the tableau: The first step is to find a basic feasible solution; typically, 

this can be done by setting all slack variables to b and all the “real” variables to 

0 (see later for cases where this doesn’t work). In that case, 1B B I-= =  

(where some of the entries might be negative, depending on the type of 

inequality), and the tableau can easily be filled in: 

 

The last row contains the reduced costs; in this case, since the objective function 

does not contain any slack variables, cB = 0, and so the reduced costs are simply 

equal to the costs for the nonbasic variables. 
 

In the case of a more complex basic feasible solution, it is still an easy matter to 

work out the reduced costs: 

 The matrix a contains 1B A- . Simply multiply each rows by the 

corresponding objective function coefficient (for example, multiply the 

first row above by 
1z

c )… 

 …and add all the rows to get to get 1

B
B A-c . Subtract this from c to get 

1
B
B A-= -c c c . 

In terms of our matrix: 

 

 If >c 0 , then there is no improving direction; we’re done! 

j j ij ii
c c a c= -å

 x1 x2   zm b 

z1 basic a11    b1 

       

zm basic    amn bm 

 c1 c2   
 

0 0 

( )
ij

a  B
x  

c  z-
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o Find pivot column: Choose the pivot column with the smallest reduced cost; 

or, in the case of ties, the one with the smallest j. This variable will enter the 

basis: 

 

o Find pivot row: Now, consider that the pivot column contains col 1 col j jB-=a A . 

Very conveniently this is none other than the negative of the emanating direction 

corresponding to j from our BFS, j-h . 

 If every item in the pivot column, col ja  is negative, then every component 

of jh  is positive – we can move along this direction without ever 

becoming infeasible. The problem is unbounded. 

Assuming the problem is bounded, find q , the maximum amount we can move in 

direction jh  before the problem becomes infeasible, and i, the variable that 

leaves the basis when this happens: 

min : 0, argmin : 0,j ji i
i ij j

i i

x x
i iB i Bq h h

h h

ì ü ì üï ï ï ïï ï ï ï= < = <í ý í ýï ï ï ïï ï ï ïî þ î þ
Î Î  

In terms of our jth column, this looks like 

 

 

 If the minimum above is attained at two values of i, the entering basis is 

degenerate. See the discussion below for anti-cycling rules. 

o Pivot: We now pivot on the element aij. Because of the structure of our tableau, 

the only thing that needs to change is the vector cB and the matrix B, which 

needs to change from B to B , where 

col ? col ?

col ? c

col 

col ? ol 

i

jB

B é ù
ê

=
úë û

é ù
=

ê úë û

A A

A A

A

A

 

 
 

To work out how to update the tableau, consider that 

min : 0i
iji

ij

x
a

a
q

ì üï ïï ïï ï= >í ýï ïï ïï ïî þ

Leaving basis Pivot row argmin : 0i
ij

i
ij

x
i a

a

ì üï ïï ïï ï= = = >í ýï ïï ïï ïî þ

{ }Entering basis Pivot column argmin : 0
j j

j
j c c= = = <
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1 1 col col ? col ?jB B B- -é
ê ú= ù
ë ûI IA   

Now, imagine we found a matrix Q such that 

1 1 col col ? col ?jQB B Q B I- -é ù
ê û= =úë AI I   

Then we would have 

1 1QB B- -=  

So once we find the mysterious matrix Q, all we need to do is apply it to our 

tableau to update it. 

 

Instead of thinking of Q as a matrix, it is helpful to think about it in terms of 

row operation – all we need is the series of row operations that will turn 1B B-  

into I and apply them to our tableau. These operations are: 

 Divide the pivot row by the pivot element, to get a 1 in there. 

 For each other row, subtract appropriate multiples of the pivot row to 

make every other element in the pivot column zero. 

In terms of our tableau 

/ for the pivot row (ie: )

for every other row (ie: )
ij

j i

a a i
a

a a ia
ab

ab
ab a b

a
a

ìï =ï= íï -î ¹ï
 

 

It turns out that the rule above also applies to the last row of the tableau. To see 

why, consider that originally, the last row consists of 

1| 0 |
B
B A-é ù é ù- ê úê ú ë ûë ûc c b   

Adding a multiple of the pivot row to this row involves adding a linear 

combination of |Aé ùê úë ûb , and so the result will be of the form 

| 0 |Aé ù é ù- ê úê ú ë ûë ûc T b  

But consider that after these row operations 

 The last element of the pivot column contains a 0, by design. 

 The last element of every other column that stays in the basis will also 

contain a 0, because 
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 The original value there was 0, being the reduced cost of a basic 

variable. 

 The column corresponding to the basic variable k is 

1 col col k kB- =A I , and since the we are only considering variables 

that remain in the basis, pivot rowk ¹ ; thus, the entry in the 

pivot row for that column is 0. 

This implies that once the row operations have been carried out 

10
B B

BB -- = = cc TT   

And so we end up with a bottom row of 

1| 0 |
B
B A-é ù é ù- ê úê ú ë ûë ûc c b   

As required. 

 Finding an initial basic feasible solution 

o In some cases, it is not so easy to find an original basic feasible solution. In this 

section, we explore two different methods. 

o Constructing an auxiliary program 

 The first method is to solve an auxiliary linear program. If our original 

problem is min  s.t. ,A⋅ = ³c x x b x 0 , we construct an auxiliary 

program 

1

s.t.

min
m

yy

A

+
+ =

³
³

+
x y b

x 0

y 0



 

Initialization of this problem is easy; we simply let x = 0 and all the y be 

basic. 
 

If *x  if a feasible solution to the original problem, then *( , )x 0  is an 

optimal zero-cost solution to the auxiliary problem. We conclude that the 

original problem is feasible if and only if the auxiliary problem has 0 

optimal cost; in which case x is a feasible solution of our original problem. 
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 If the auxiliary problem terminates with only original variables in the 

basis, everything is nice and dandy; we simply delete the columns 

corresponding to artificial variables, and go from there. 

 It might be the case, however, that the problem ends with a zero-cost 

solution *( , )x 0  and basis B that has one or more of the yi in the basis (at 

0 level). 
 

We note, however, that since A has rank m, it is theoretically possible to 

find m columns of A that are linearly independent and form a matrix B . 

It is also clear that once we have found this new basis matrix, the same 

solution *x  is valid for that basis. Why? Because the only components of 

x* that were non-zero previously are still in the basis, since Í  , and 

the components we drive out of the basis are necessarily 0, since we only 

drive out y variables. 

 It remains to discuss how we can determine, from the final tableau of the 

auxiliary problem, which variables to bring into the basis. Our technique 

will be as follows: 

 Choose one of the y to leave the basis – say it is the th  basic 

variable. This will be our leaving row. 

 Look for a non-zero entry of 1B A-  in that row – say entry j. We 

claim that col jA  is linearly independent of the other columns of A 

in the basis. 
 

To see why, consider that the columns of the basic variables form 

the identity matrix. Thus, since our row corresponds to an 

artificial variable, it is clear that every row corresponding to a 

“real” variable that is in the basis will have a 0 in that row. Thus, 

any column with a non-zero entry in that position, it is linearly 

independent. 
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 We now simply pivot, driving   out of the basis, and bringing jth 

in. (Note that the pivot element might be negative, unlike in the 

simplex  method). 

 [Note that our assumption A is full rank precludes that possibility 

that an entire row of 1B A-  is 0; thus, the method above always 

works. If such a row occurs, it can be eliminated]. 

o The Big-M Method 

 An alternative method is to create a problem of the form above, but 

minimize a function of the form 
ii

M y⋅ + åc x , where M is kept as a 

large undetermined parameter. 

 For a sufficiently large choice of M, if the original problem is feasible and 

its optimal cost is finite, all the artificial variables will eventually be 

driven to 0. 

 Anti-cyling Rules 

o If a vertex is degenerate, it is possible that * 0q =  at that vertex. In other words, 

we move bases without changing vertices. Sometimes, this can happen many 

times before we leave a vertex, and in some cases, the process returns us to the 

basis we started with – in that case, the simplex algorithm cycles. This is clearly 

undesirable, and we now explore ways to avoid this phenomenon. 

o Definition: u is lexicographically larger than v if the first nonzero component of 

u – v is positive. 

o Lexicographic pivoting rule: 

 Choose any variable to enter the basis, provided its reduced cost is 

negative. 

 For our entering variable, look at the rows which will need to be reduced 

by the operation (ie: rows for which the pivot column is positive). Divide 

each of these rows (including x) by the pivot amount, and choose the 

lexicogrpahically smallest row to enter the basis. 
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 It can be shown (p 110 of B&T) that under this pivoting rule, the simplex 

algorithm will always terminate in a finite number of steps, provided that 

every row is lexicographically positive at the start of the algorithm (if this 

is not the base, we can simply re-arrange columns of 1B A-  to ensure that 

the first columns of the tableau form the identity matrix). 

o Bland’s Rule 

 Bland’s rule simply states that we should choose the row with the 

smallest value of i to enter the basis. 

 It is also known to result in an algorithm in which cycling never occurs. 

Duality 

 Motivation I 

o Theorem (optimality Theorem): The basic non-degenerate feasible solution 

1
B

N

B-æ öæ ö ÷÷ çç ÷÷ çç= = ÷÷ çç ÷÷ çç ÷÷ç çè ø è ø

x b
x

x 0
 

to the linear programming problem 

min    s.t.  0,A⋅ ³=c x x b x  

is optimal if, and only if 

( ) ( ) ( ), , ,
0  0

  

 

B N
M

I I

Aæ ö æ ö÷ ÷ç ç÷ ÷ç ç= = =÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
³c y w y w y w w 0

      

[Note: A is the matrix of normals to equality constraints at x, whereas ( )0  I  is 

the matrix of normals to inequality constraints tight at x]. 

Proof: First note that by the definition of a basic solution, the rows of M are 

linearly independent, and so there is a vector that satisfies the equation above. 

[More deeply, this means that the rows of M form a basis for n ]. 
 

Now: 
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( ) ( )

( )
( )

1 1
1

1 1

, ,
0

,

,

B N

B N B

B B N
M

I

B B N

- -
-

- -

æ ö- ÷ç ÷ç= = ÷ç ÷ç ÷çè ø
= -

=

y w c c c

c c c

cp

    

    

Since the reduced costs must be positive, this proves our theorem. Note also that 

the “if” part works even if our solution is degenerate. 
 

The fact w > 0 has an interesting geometrical explanation. It effectively states 

that at an optimal solution x, c is a 

 Linear combination of the normals to the equality constraints at x. If this 

were not the case, we would be able to move along that equality 

constraint while decreasing the objective function. 

 Non-negative linear combination of the normals to the inequality 

constraints that are tight at x. If this were not the case, it would be 

possible to move away from the constraint while decreasing the objective 

function. 
 

Diagramatically, consider the following polyhedron, and imagine we are at the 

BFS x: 

 

First note that a1 and a2 are the normals to the inequality constraints satisfied at 

x. It should be clear that c needs to be contained in the cone defined by the two 

directions; if it wasn’t the case, we’d be able to decrease the objective function by 

moving in an opposite direction to c without violating the constraints. 
 

This result should not be surprising. We saw above that 0j ³c h  for all 

nonbasic j at an optimal solution. In other words, c makes an acute angle with 

every improving direction; logically, it follows that c must lie in the cone formed 

by the normals (we prove this formally later using Farkas’ Lemma). 
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o Now, consider that the constraint in the previous theorem can be written as 

( ) ( ), ,
0

B N
A

I

æ ö÷ç ÷ç= = + =÷ç ÷ç ÷çè
³

ø
c y w y w 0w 0 w        

Now, if we relax the requirement that the first m components of w be 0 

A + =y w c  

This leads us to define the dual problem, with constraints A £y c , and y free: 

max   s.t.  A⋅ £b y y c  

o This already gives us some insight into complementary slackness; the dual is 

basically equivalent to the primal, provided that w = 0 for the first m 

components; ie: those components that are in the basis. We will indeed see that if 

x and y are primal and dual feasible and 0⋅ =x w , then both are optimal, 

because they both solve identical problems and weak duality (see later) holds. 

o The w (ie: the dual slacks) are none other than the reduced costs of the original 

problem. 

 Motivation II 

 Weak duality 

o Theorem: If x is primal feasible and y is dual feasible, then £⋅ ⋅b y c x  

Proof: Consider 

 We have that A =x b , and so A = ⋅y x y b . 

 We also have that AA £  £c y cy   , and since 0³x , A £ ⋅y xx c . 

The result follows. 

o Corollary: If x is primal feasible, and y is dual feasible, and ⋅ = ⋅b y c x , then x 

and y are optimal solutions to their respective linear programs. 

o The question arises, however, of whether there ever arises x and y that satisfy 

the hypotheses of this corollary. The answer is provided by… 

 …Strong duality 

o Theorem: 

 If either the primal problem or the dual problem has a finite optimal 

solution, then so does the other, and min max⋅ = ⋅c x b y . 
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 If either problem has an unbounded objective function value, then the 

other has no feasible solution. 

(Note: the converse of the second statement is not true – it still leaves the 

possibility that both problems are infeasible). 

Proof: 

 Suppose the primal has a finite optimal solution 

* 1
*

0
B

N

B-æ ö æ ö÷ ÷ç ç÷ ÷ç ç= =÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

x b
x

x
 

Now, let 
B

B-=y c  [the optimal simplex multipliers]. We then have 

( ) 0
0B BB

N NN B

A B N
N B-

æ öæ ö æ ö- ÷÷ ÷çç ç÷÷ ÷çç ç- = - = =÷÷ ÷çç ç÷÷ ÷ç -ç ç÷÷ ÷ç ççø èè ø
³

è ø

c cc
c y y

c cc c
  

   

And so the solution is dual feasible [this is a reformulation of the fact we 

proved above; that we can write ,A ³= +c y w w 0 ]. Furthermore, 

1

B B
B B- -⋅ = = ⋅ =c x c b b y b c    

By the corollary, this proves our theorem. 

 If ⋅  -¥c x , the dual cannot be feasible, because any feasible y would 

result in a lower bound on ⋅c x . 

o The first part of the proof is illuminating in that it shows that the vector of 

simplex multipliers for the first problem. At every iteration of the simplex 

method, ⋅ = ⋅c x b y  still holds, but some of the reduced costs might be negative, 

and so the problem is not dual feasible. 

 Theorems of the Alternative 

o Duality is useful in proving various Theorems of the Alternative. An example is 

Farkas’ Lemma. 

o Theorem (Farkas’ Lemma): Exactly one of the following two problems have 

a solution: 

1. ,A = ³x b x 0  

2. , 0A £ ⋅ >y 0 b y   

It is first interesting to consider the geometric interpretation of these two 

statements: 
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1. The first statement implies that b is in the cone formed by the columns of 

A. 

2. The second statement implies that y makes an obtuse angle will all the 

columns of A, but an acute angle with b. 

Clearly, only one of these can hold. 

Proof: Consider the primal-dual pair 

(P)                             (D) 

min 0

 s.t

0

A =
³
x b

x

            
max

s.t. A £

⋅b y

0y
 

And note that 

 (1) is feasible if and only if (P) has a solution. 

 If (D) is unbounded, (2) has a solution. Similarly, if (2) has a solution y, 

multiple of y also lies in the feasible set of (D), and so (D) is unbounded. 

Finally, we note that since the dual is feasible (y = 0 works), then by Strong 

Duality, (P) is infeasible if and only if (D) is unbounded. 

o Note: it is the case in most of these theorems that one direction is easy to prove. 

In this case, it is easy to show that both (1) and (2) cannot have solutions: 

(1) A = ⋅yy x y b    (2) A £x y x 0   

This is clearly impossible if 0⋅ >b y . 

o Farkas’ Lemma allows us to confirm the statement we made above – namely 

that, at an optimal BFS x, c must lie in the cone defined by the normals of the 

inequality constraints that are tight at that point. To see why, consider the LP 

min    s.t.  A⋅ ³c x x b  

And consider a basic feasible solution *x , and let 
tight

A  be the matrix of 

constraints that happen to be satisfied there, so that *

tight
A =x b  (the other 

constraints, contained in 
slack

A  satisfy *
slack

A >x b ). Our cone requirement 

therefore reduces to the fact that 

tight
,A= ³c y y 0  has a solution 

By Farkas’ Lemme, however, this is only true if and only if 
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tight
, 0A ³ ⋅ <0y c y  has no solution 

But note that the statement 
tight

A ³0y  simply requires that y be an improving 

direction (because if it is true, then * +x y  will also satisfy *( )A + ³x y b ), and 

the second statement requires that feasible direction to be “downhill”. 
 

Thus, Farkas’ Lemma tells us that if there are no downhill feasible directions, c 

must lie in the cone of the normals of the active inequality constraints. 

 Complementary slackness 

o Consider the following dual pair 

,

(D)

(P) :

: max

min    s.t

  s.t.  , 0

.  A

A

³ ³

⋅ £

⋅

³

b x 0

b y y

x

c

c

y

x
  

We can re-write these in standard form as 

, ,

(D) :

(P) : mi

max    s.t.  ,

n    s.t

,

.  

A

A ³ ³

⋅ + = ³ ³

⋅ - = b x 0 s 0

b y y w c y

c

0

x

0

s

w

x
  

o Theorem: If x is feasible in (P) and y is feasible in (D), then they are both 

optimal for their respective problems if and only if 

( ) ( )0A A⋅ = ⋅ - = ⋅ = ⋅ - =x w x c y y s y x b 0  

Proof: Our two constraints are 

A

A -

=

=

+

x b

y w c

s
  

Consider multiplying the first by y  on the left, and the second by x  on the 

left 

A

A + ⋅

- ⋅ ⋅

=

=

⋅

b

x y x

y x y s

x

y

w c



 
 

Subtracting the first from the second 

⋅ + ⋅ = ⋅ - ⋅x w y s x c y b  

This quantity is called the duality gap, because it is the gap between the primal 

and dual optimal solutions. Now, consider that: 

 LHS of the above = 0 

 RHS of the above = 0 

 Optimality, by the corollary to weak duality 
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 RHS = 0 

and the last statement implies the first. Thus, they are all equivalent. 

o This makes intuitive sense in light of the above – it is only where the constraints 

are tight that the Lagrange mutlipliers can be anything apart from 0, so as to 

“penalize” departure from these constraints. 

o This also explains the conditions in the famous Karush-Kuhn-Tucker (KKT) 

Theorem, which insists that a standard form LP is optimal if and only if there 

exist y and w such that 

 A =x b , with ³x 0  [Primal feasibility] 

 A + =y w c , with 0³w  [Dual feasibility] 

 ⋅ =x w 0  complementary slackness. 

Or, more general, x is a solution to the problem min ( ) s.t. ( ( )) ,f £ =
x

0 hx xg x 0  

if and only if 

 { }( ) ( ) ( )f + + =
x

x g x h x 0m l   [Stationarity] 

 , ( )( )£ =0 h xg x 0  [Primal feasibility] 

 ³0m  [Dual feasibility] 

 ( ) 0
i i
gm =x  for all i [complementary slackness] 

 Strict complimentary slackness 

o Consider a situation in which c is a linear combination of a single normal at x: 

 

In this case, we have dual degeneracy – one of the reduced costs/optimal dual 

variable slacks is equal to 0. 

o In this case, it is clear that every solution along the dotted constraint above are 

optimal. This implies that primal non-uniqueness implies dual degeneracy. The 

converse of this statement, however, is not necessarily true, because even though 

the reduced cost of moving away along the solid constraint (a2) is 0, there could 
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have been a third constraint there preventing the move, and therefore preventing 

non-uniqueness. 

o We say a solution satisfies strict complimentary slackness if the dual problem is 

non-degenerate. In other words, provided that either 0
i

x =  or 0
i

w =  for each i, 

but not both. Every linear program has at least one optimal solution which 

satisfies strict complimentary slackness (in the case above, any solution along the 

thick dotted line would do the trick). This is not true of general convex 

programming. 

 Economic interpretation of duality 

o Consider a problem with optimal solution 

* 1
*

*
B

N

B-æ ö æ ö÷ ÷ç ç÷ ÷ç ç= =÷ ÷ç ç÷ ÷ç ç÷ ÷ç÷ç è øè ø

x b
x

0x
 

o Consider what happens when b is changed to ˆ
i

d= +b b e . As long as the change 

is small, the basis remains the same, and the new optimal solution is 

1 * 1
* ( )

ˆ i B i
B Bd d- -æ ö æ ö+ +÷ ÷ç ç÷ ÷ç ç= =÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

b e x e
x

0 0
 

The simplex multipliers do not depend on b and are therefore unchanged; ˆ =p p  

o Now, consider the new cost 

* * 1 1 *ˆˆ
B B i i

z B B zd dp- -= = + = +c x c b c e    

o It is clear, therefore, that the ith dual variable, 
i

p , corresponds to the impact on 

the objective cost of changing the RHS of constraint i by one unit. 

o This also makes sense in terms of geometric interpretation above. We saw that 

p  was the particular linear combination of equality constraints that formed c. 

Clearly, if constraint j changes by 1 unit, the amount we move along c is the 

projection of that constraint onto c, which is none other than 
j

p . 

o Crucially, the above also implies that in a problem in which slack variables were 

included to turn inequality constraints into equality constraints, the dual 

variables are simply the reduced costs of these slack variables (or the negative of 

these reduced costs, depending on the sign of the inequality). 



Optimization I Notes Page 32

 

 
Daniel Guetta, 2010

o We can also ascribe an economic interpretation to the dual program itself. Two 

examples: 

 In a transportation problem where each constraint corresponds to supply 

at a source or sink, the dual variables can be interpreted as the cost an 

external contractor would charge to handle the transportation of one unit 

away from a source or towards a sink. The constraint requires the total 

cost of transportation of unit material from a given source to a given sink 

be less than or equal to our cost for transportation along that path. 

 In a diet problem, where each problem corresponds to a given nutrient, 

the dual variables can be interpreted as the cost of a pill containing a unit 

amount of the said nutrient. 

 The Dual Simplex Algorithm 

o The primal simplex algorithm effectively involved jumping from solution to 

solution while maintaining primal feasibility and complementary slackness and 

looking for dual feasibility. The dual simplex algorithm does the opposite – it 

keeps dual feasibility (ie: primal optimality) and complementary slackness and 

looks for primal feasibility. 

o Consider a basis consisting of m linearly independent columns of A, with the 

following tableau: 

 

Or, in more detail: 

 

We consider a solution which might be primal infeasible (ie: some of the xB may 

be negative) but primal optimal (ie: all the reduced costs are positive). 

1 col 1 1 col nB B- -A A

 


 

,1

,

B

B m

x

x

  

1
       

n
c c  T

B B
-c x

1B A- 1B- b
Tc  

1T

B
B--c b  
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o The dual simplex method pivots on such a tableau while maintaining dual 

feasibility. Once again, we describe the operations involved in terms of the array 

a: 

 

The steps involved are as follows: 

 Look at the components of xB. If they are all nonnegative, we’re done. 

Else, pick a negative one; this is the row i, row ia  on which we will pivot; 

it will exit the basis. 

 Look along the pivot row; if every component row 0i
j

³a , the problem is 

unbounded, with optimal dual cost ¥ . 

 Otherwise, for each j such that row 0i
j

a < , compute row / | i
j j

c a ; pick the 

smallest ratio. The corresponding row will enter the basis. 

 Perform a pivot operation as for the standard simplex method. 

Note that the dual simplex method is identical to the primal simplex method, 

carried out on the dual (since the dual is the transpose of the primal). [Strictly 

speaking, this is an ambiguous statement, because the dual is not in standard 

form – more accurately, it is a version of simplex adapted to problems expressed 

in terms of inequalities]. 

 Practical issues 

 

 

PRIMAL min max DUAL 

constraints 

> bi > 0 

variables < bi < 0 

= bi free 

variables 

> 0 < cj 

constraints < 0 > cj 

free = cj 

( )
ij

a  
B

x  

Tc z-
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Sensitivity Analysis 

 Consider the linear program 

min    s.t.  ,A⋅ = ³c x x b x 0  

And its dual 

min    s.t.  A⋅ £b y cy  

 We now consider how the solution responds to changes in various problem parameters. It 

will be important, in doing this, to decide whether a change in a given parameter results 

in a change in basis or not. If we had an original optimal basis B with an optimal 

solution *x , we require the following two conditions to be met for the basis to remain 

optimal 
1

1

[Feasibili ty]

[Optimality]

 

B

B
B

B A-

- ³

- ³

= 0

c 0

x

c

b
 

 

 Adding a new variable 

o Suppose we add a new variable 
1n

x +
 together with a corresponding column 

col 1n+A  and objective coefficient 
1n

c +
. This gives the new problem 

col 1
1

1

min

s.t.

, 0

n
n

n

A x

x +

+
++ =

³ ³

c x

x A b

x 0



 

o We note that *( , 0)x  is a basic feasible solution, with the same basic matrix B; so 

we only need to check optimality. In fact, we simply need to check optimality for 

the new variable: 

1 col 1

1 1
0n

n n B
c c B- +

+ += - ³c A  

If this condition is satisfied, our solution is optimal, with the same objective 

value. 

 Finite Unbounded Infeasible 

Finite    

Unbounded    

Infeasible    
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o Otherwise, it is a simple matter to add an extra column to the simplex tableau 

and perform a few more iterations. 

 Adding a new inequality constraint 

o Consider adding a new constraint row 1

1

m
m

b+
+³⋅a x . If *x  satisfies this 

constraint, then it is an optimal solution to the new problem. 

o If not, we introduce a new nonnegative slack variable, and re-write 

row 1

11n m
m bx +
+

+⋅ - =a x . The  matrix A is then replaced by 

row 1 1m

A
A +

é ù
ê ú= ê ú-ê úë û

0

a
 

We introduce a new basis that includes all the variables in B plus our new slack 

variable. This gives 

row 1 1m

B

B
B +

é ù
ê ú= ê ú-ê úë û

0

a
             

1

1
row 1 1 1m

B

B
B

B

-
-

+ -

é ù
ê ú= ê ú-ê úë û

0

a
 

The basic solution is ( )* row 1 *
1

, m
B m

b+
+⋅ -x a x  – and it is not feasible, since the 

original constraint was not satisfied. 

o We want to figure out a way to add this new constraint to our tableau (which, 

recall, contains 1B A- ). First, consider the problem algebraically. We have that 

1

1
row 1 1 row 1

0

1m m

B

B A
B A

B A

-
-

+ - +

é ù
ê ú= ê ú-ê úë ûa a

 

And also that the reduced cost do not change, because the objective coefficient of 

the new slack variable is 0: 

1 1  0    0     0
B

B A B A- -é ù é ù é ù- = -ê ú ê ú ê úë û ë û ë ûc c c c     

o The above is hardly useful in terms of practically writing the new tableau. More 

informatively, we be describe the above in terms of row operations: 

 Add a new row to the tableau simply consisting of row 1     1m+é ù-ê úë ûa  

 Perform the row operations necessary to ensure that the columns of 1B A-  

that correspond to basic variables form the identity matrix. In particular, 

this involves: 

 Multiplying the row by –1, to obtain a 1 in the last column. 
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 Add row 1 1m
B

B A+ -a  to the last row – this is equivalent to adding 

( )row 1m
B j

a +  of the jth row of the tableau to the last row. But 

remember that 

o The jth row will contain a 1 in the column corresponding to 

the jth basic variable. 

o ( )row 1m
B j

a +  is the current entry in the last row, in the 

column corresponding to the jth basic variable. 

Thus, these operations are equivalent to ensuring that every 

component of the last row corresponding to basic variables is 0. 

o The only part of the tableau we have not considered in the last column, 

containing xB. This, however, is rather simple – the old basic variables remain 

basic, and the slack variable picks up the slack from the inequality. 

 Adding a new equality constraint 

o Consider adding a new constraint row 1

1m
m b+

+⋅ =a x . If *x  satisfies this 

constraint, then it is an optimal solution to the new problem. 

o Consider the dual of this problem 

1 1

row 11

max

s.t.   

m m

mm

p b

A
p

+ +

++

⋅ +
é ù
ê úé ù
ê úê úë û ê û

£
úë

p

p c

b

a
   

If *p  is an optimal basic feasible solution to the original problem, then ( )*  0p  is 

a feasible solution to the new dual problem. 

 Changing the vector b 

o Imagine now that we change the vector b to ˆ
j

d= +b b e . 

o Changing b does not affect optimality conditions, so all we need to check are 

feasibility conditions: 

( )
( )

( ) ( )

col 
1

1

1

0

0

0

j
j

B

B i ij
x B

B

i

d

d

d
-

-

- + ³

+ ³

+ ³ "

e

x B

b
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Equivalently, 

( ) ( )1 11 1: 0 : 0

( ) ( )
max min

( ) ( )ij ij

B i B i

j B j B
ij ij

x x

B B
d- -- -> >

æ ö æ ö÷ ÷ç ç÷ ÷ç ç- £ £ -÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
 

o If d  falls within this range, the current basis is still feasible and optimal. As we 

saw above, the change in the objective function will be 
j

dp . 

o If d  falls outside the allowed range, the solution is still optimal, but it is primal 

infeasible. In that case, we simply re-solve the problem using the dual simplex. 

 Changing the cost vector c 

o Suppose that we change the vector c to ˆ
i

d= +c c e . Primal feasibility is clearly 

not affected. The optimality conditions, however, dictate that 

1

B
B A- £c c   

o We now consider two options 

 ci is the coefficient of a nonbasic variable – in that case, only the 

ith equation above is modified; we require 

1 col 
î

i j

i
B

i

j

c

c c

c

B

cd
d

-³
+ ³- +

³-

c A

 

 ci is the coefficient of a basic variable – in that case, every equation 

is modified – we require: 

( )
( )

( )

1 col 

1 col 

1 col 

1 col 
B

B i

i

i

B

B

c

cB

B c
a

a
a

a

a

a

a

d

d

d

-

-

-

-

£

+ £

£

+

c A

c e A

A

A
 

o We can view this in terms of our dual methodology above. Provided the vector c 

remains within the cone of normals at the basic feasible solution, the solution 

remains optimal. Otherwise, it “jumps” to an adjacent vertex. 

 Parametric programming 

o Consider a linear program of the form 

min ( )

 s.t.

0

A

q

³

+ ⋅
=

c d x

x b

x
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We denote the optimal value of this program by ( )z q . Clearly, as q  changes, 

there will be “breakpoints” at which c leaves of the cone of the current basis, and 

at which we jump to the next basis. 

o Claim: The function ( )z q  is piecewise linear and concave.  

 

As q  gets very large or very small, the problem might become unbounded (in 

which case ( )z q =-¥ ) or it might continue to be bounded, in which case ( )z q  

keeps on decreasing linearly indefinitely. 

Proof: Two parts: 

 Proving linearity is simple; let 
1
q  and 

2
q  be two values of q  for which the 

same basis B is optimal. We then have 

*

2 1 2 1
*

2 1

( ) ( ) ( ) ( )

( )
B B B

B

z zq q q q

q q

é ù- = - ⋅ê úë û
= - ⋅

c c x

d x
 

This is clearly linearly. 

 Proving concavity is slightly more involved. Denote the optimal solution 

at q  by *( )qx . Consider any 
1
q  and 

2
q , and define 

3 1 2
(1 )q lq l q= + - , 

where [0,1]l Î . Now, it is clear that 

( ) *
1 3

*

2 2 3

1
( )

( ) ( ) (

( )

)z

z q q

q

q

q q

£ +

£ +

c d x

c d x




 

But 

( )z q

q
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( )
( ) ( )

1

*
3 1 2 3

*

2

*

1 3 2 3

(

(

) (1

) (1 )

) ( )

( ) ( ) (

)

1 )

(z

z

z

q lq l q q

l q q l q q
l q l q

= + + -

= + + - +

³ + -

c d d x

c d x c d x



 
 

And so z is concave. 

Network flow problems 

 The network flow problem 

o Let { }( ) ( , ) : ( , )iI j i j j= Î   be the set of edges incoming into i, and 

{ }( ) ( , ) : ( , )iO i i j j= Î   be the set of edges leaving node i. Let bi the supply at 

node i, that enters from the outside. Then the network flow problem is 

( )( , ) ( , ) ( , ) ( )
min  s.t.  , 0

ij ijI jij ij ij ij ji j j i j ii O
c f f f ub j f

Î Î Î
- " Î £ £=å å å

  

o The first constraint can concisely be expressed as Af = b where each row of A 

represents a node and each column represents an arc. aij contains 1 if arc j leads 

to node i, a –1 if arc j leaves from node i, and a 0 otherwise. 

o To deal with lower bound mij on flows, simply define 
ij ij ij
f f m= - , 

ij ij ij
u u m= -  

and A= -b b m . 

o The dual of the un-capacitated problem is max   s.t. A⋅ £b p cp . 

 Due to the structure of A, we in fact have  ( , )
i j ij

p p jc i£ "- Î  . Note 

that adding or removing a constant from each pi keeps the solution 

feasible, and has to effect on the objective (because 0⋅ =1 b ). As such, 

we can assume pn = 0 

 Complementary slackness requires that 
i j

p p c- =  for all arcs on which 

something flows (ie: on which 0
ij
f ¹ ). These can therefore easily be 

calculated by setting pn = 0 and backtracking through arcs with flow. 

 The pi represent shadow prices of increasing bi by a certain amount. 

 Network flow algorithms 

o A circulation is a flow vector h such that Ah = 0. The cost of such a circulation 

is ⋅c h , and “pushing” q  units of the flow means setting q¬ +f f h . 
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o A spanning tree solution f is one that is obtained by (1) picking a set T Ì   of 

arcs that form a tree when their direction is ignored (2) partitioning them into 

two disjoint subsets; set the flow in one subset to 0 (in a capacitated problem, set 

some to the min flow and some of the max flow), and that in the other subset to 

satisfy the flow equations, starting from the leafs. 

Theorem: A vector is a spanning tree solution if and only if it is a basic solution 

of the minimum-cost flow problem. 

o (Another way of finding a starting basis is eliminating all sources and sinks in the 

system and simply starting with f = 0). 

o Once we have such a solution, we can compute reduced costs for each arc not in 

the spanning tree as ( )
ij ij i j

c c p p= - - . If all are non-negative, we’re done. Else, 

choose a negative one. 

o The new arc and the current tree form a cycle – push as much flow as possible 

around that cycle. 

o Note that since A only contains 0s or +1s, AB can be rearranged to contain only 

+1 on its diagonal. Thus, its determinant is +1, and by Crammer’s Rule, it’s 

inverse contains only integer entries. Finally, 1

B
A-=f b  and 1

B B
A-= cl  , and so 

provided c and b are integer-valued, the primal and dual solutions also are. 

o The negative-cycle algorithm creates a residual network, in which an arc is 

created for every “extra bit” of forward and backward capacity in the original 

network. Finding a negative-cost cycle in the initial network is like finding one in 

the residual network. The algorithm terminates when there are no negative-cost 

cycles. 

 The max-flow problem 

o Example: m identical machines. Job i requires pi machine-hours, cannot be 

processed before time ri and needs to be completed before di. Create a node for 

each job and a node for each time period (list the ri and di in order, and split 

time at each point). Arcs into job nodes with capacity pj indicate how many 

machine-hours are spent on that job. Arcs from time-periods with capacity 
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length of time periodm´  indicate how much is done in that time period. Arcs 

from jobs to time periods indicate how much is done of that job in that time 

period. Our scheduling problem is then a maximum-flow problem.  

o The Ford-Fulkerson algorithm proceeds as follows (1) start with a feasible flow 

(2) search for an augmenting path (a path from s to t in which every forward 

node is not saturated, and every backward node has flow greater than 0) (3) push 

as much flow as possible through that path. 

o To find an augmenting path, we use a labeling algorithm. Node i is labeled if 

there is an augmenting path from the source to node i. Start with { }I s= . 

Remove a node from I and see if any arc leaving this node could be added to the 

augmenting path. If so, add all the possible target nodes to I. Repeat until I is 

empty or contains the sink. 

o A cut S is a subset of   such that s SÎ  and t SÏ . The capacity of a cut is 

given by 
{( ) : , },

( ) capacity
iji i Sj j S

C S
Î Î Ï

= å 
. Clearly, the max flow is < the min 

cut. If the Ford-Fulkerson algorithm terminates, the labeled nodes form a cut, 

and the value of the flow must be equal to the cut (else more nodes would have 

been labeled). Thus, max flow = min cut. 


