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FOUNDATIONS OF OPTIMIZATION 

Basics 

 Optimization problems 

o An optimization problem is 

minimise ( ) subject to f Îx x   

f is the objective (real)   is the constraint set/feasible set/search space. 

o *x  is an optimal solution (global minimizer) if and only if 

* ( )( )f f£ " Îx xx   

o Maximizing f(x) is equivalent to minimizing –f(x). 

o We consider problems in the following form 

minimize ( )

subject to (  

( ) 0  

) 10

i
n

i
i m

g m i

f

r

h = " £ £
£ " £ £

Î

x

x

x

x



 

o We consider the following subsets of the problem 

 In linear programming, all functions are linear. 

 In convex programming, the f and g are convex, and the h are linear. 

o If   is the feasible set of a problem, a point Îx   is a local minimum if there 

exists a neighborhood ( )
r

N x  such that ( )  ( () )
r

f f N£ " Î Çy yx x . It is an 

unconstrained local minimum if ( ) (  ) ( )
r

f Nf £ " Îy y xx . (Strict equivalents 

exist). 

 Topology 

o An open ball around a point nÎx   with radius r > 0 is the set 

{ }:( ) n
r

rN Î -= <x y x y , where 2

i
x= åx . 

o A point nÎ Ìx   is an interior point if there exists an open ball such that 

( )
r

N Ìx  . A set nÌ   is open if int=  . 
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o A point nÎ Ìx   is a closure point if, for every open ball ( )
r

N x , there exists 

Îy   with ( )
r

NÎy x . A set nÌ   is closed if cl =  . 

o The set of reals is both closed and open. 

o Theorems: 

 The union of open sets is open. The intersection of a finite number of 

open sets is open. 

 The intersection of closed sets is closed. The union of a finite number of 

closed sets is closed. 

 Analysis 

o A sequence of vectors { } n

n
Ìx   converges to a limit nÎx   if lim 0

kk¥
- =x x , 

and we say that 
k
x x . 

o A set nÌ   is (sequentially) compact if, given a sequence { }
k

Ìx  , there is a 

subsequence { }
ik

x  converging to an element Îx  . 

 Theorem (Heine-Borel): A set nÌ   is compact if and only if it is 

closed and bounded. 

 Theorem: A closed subset of a compact set is compact. 

 Theorem: Suppose { }
n
  are a sequence of non-empty, compact sets that 

are nested (ie: 
1n n+ Ì  ) – then their intersection is non-empty. 

o A real-valued function f defined on a domain nÌ   is continuous at the point 

x Î   if, for every sequence { }
k

Ìx   with 
k
x x , lim ( ) ( )

kk
f f

¥
=x x . f is 

continuous if it is continuous at all points in  . 

o A function f is coercive over a set nÌ   if, for every sequence { }
k

Ìx   with 

k
¥x , we have lim ( )

kk
f

¥
= ¥x . 

o The inverse image of the set Ì   is defined by { }1 ) (( : )f f- = Î Îx x   . 

 Theorem: If f is continuous and   is open closed and   is open closed, then 

1( )f -   is also open closed. This is the standard way to prove that a set is 

open/closed. 
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o Definition: A function is convex if ( )2 1 21
((1 ) ) (1 ) ( )f f fl l l l+ + -- £x x xx . It 

is strictly convex if the inequality is strict for 
21

¹x x . We say f is convex over 

dom f=  if it is convex when restricted to  . f is (strictly )concave if –f is 

(strictly) convex. 

o Definition: If f is convex with a convex domain  , we define the extended-

value extension { }: nf  È ¥   by 

( ) if 
( )

otherwise

f
f

ìïï= íï ¥ïî

Îx x
x


 

and we let 

{ }dom : ( )nf fÎ= < ¥x x   

An extended-value function is convex if 

 Its domain is convex. 

 The standard convexity property holds. 

o Given nÌ  , the indicator function { }: nI  È ¥ 


 as 

0 if 
( )

otherwise
I

ìïï= íï¥ïî

Îx
x




 

If   is a convex set, then I

 is a convex function. 

o Theorem: If f is convex over a convex set nÌ  , then every sublevel set 

{ }: ( )f gÎ £x x  is a convex subset of n . The converse is not true (eg: log x 

on (0, )¥ ). However, we define… 

o …Definition: A extended real valued function }: {nf  È ¥   is quasiconvex 

if, every one of its sublevel sets (ie: for every g Î  ) is convex. 

 Calculus 

o A function :f    with nÌ   is differentiable at intÎx   if there exists a 

vector ( ) nf Îx  , known as the gradient, such that 

( ) (
i

)
l m 0

()f f f


 ⋅+ - -
=

d 0

x d x

d

x d
 

And 
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f is differentiable over an open set Î   if it is differentiable at every point in 

the set. If, in addition, the components of the gradient are continuous over  , 

then f is continuously differentiable over  . 

o If, for a point intÎx  , each component of the gradient is differentiable, we say 

f is twice differentiable at x, and we define the Hessian Matrix 2 ( ) n nf ´ Îx   by 

2
2 ( )

( )
i j ij

f
f

x x

é ù¶ê ú = ê ú¶ ¶ê úë û

x
x  

If f is twice continuously differentiable in a neighborhood of x, then the Hessian 

is symmetric. 

o Suppose at f is twice continuously differentiable over a neighborhood ( )
r

N x , then 

for all ( )
r

NÎd 0  

221
2

( ) ( )( ) ( ) T Tf ff f o
æ ö÷ç+ = + +  + ÷ç ÷è ø

x d d x d dx d x  

(Formally, this means that for every C > 0, there exists a neighborhood around 0 

such that the estimate of ( )f +x d  differs from the real value by no more than 

2
C d . 

o Consider a vector-valued function : ,m n ÌF     and a point intÎx  . 

We define the gradient to be the matrix ( ) n m´ ÎF x   with 

1

( )
( ) ( ), , ( ) ( ) j

m ij
i

F
F F F

x

¶é ù =    =ê úë û ¶

x
F x x x x  

o The chain rule states that for interior points, if ( ) ( ( ))=h x g f x , then 

( ) ( ) ( ( )) =  h x f x g f x  

 Linear algebra – Kernels and Images 

o Consider a matrix m nA ´Î  . Then 

 { }ker :nA AÎ= =x x 0  

 { }im : ,m nA A= =Î Îyy x x   

o Given a set nÎ  , { }: 0 n^ = ⋅Î = " Îx yx y   
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o Lemma: im ker( )A A
^é ù= ê úë û

 . In other words, given mÎz  , 

for some 0  with 0n AA Î  ⋅ = " == z y yz x x y 

 

 Sets, etc… 

o Affine sets 

 Definition: A set nÌ   is affine if, for all points 
1 2
, Îx x   and a 

scalar l Î  , 
1 2

(1 )l l+ - Îx x  . 

 Example: The empty space, a line and any subspace are affine. 

Similarly, { }:n A= Î =x x b  is affine. 

 Definition: Given a set of points nÌ  , the affine hull aff   is the 

set of points 
1 1 k k
l l+ +x x , where k > 1, { }

i
Ìx   and 1l+ = . The 

affine hull is affine and is the smallest affine set containing  . 

o Convex sets 

 Definition: The set   is convex if, for all points 
1 2
, Îx x   and a scalar 

(0,1)l Î , 
1 2

(1 )l l+ - Îx x  . Clearly, affine sets are also convex. 

 Definition: Given a set of points nÌ  , the convex hull conv   is the 

set of points 
1 1 k k
l l+ +x x , where k > 1, { }

i
Ìx  , 0

i
l ³  and 1l+ = . 

 Theorem (scalar multiplication): if nÌ   is convex and a Î  , 

then { }:a a= Îx x   is convex. 

 Theorem (vector sum): If , nÌ    are convex sets, then the set 

{ }: ,+ = + Î Îx y x y     is also convex. 

 Theorem (affine transformations): If nÌ   is a convex set,  

m nA ´Î   is a matrix and mÎb   is a vector, then the set 

{ }:A + Îx b x   is a convex subset of m . 

 Theorem: If   is an arbitrary collection of convex sets, then the 

intersection ÎÇ
 
  is also convex. 

o Miscellaneous definitions 
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 Definition: A set   is a polyhedron if it is of the form 

{ }: A= Î £x x b , for some m nA ´Î   and a vector nÎb  . 

Polyhedra are convex. 

 Definition: A set nÌ   is a cone if for all , 0lÎ ³x  , l Îx  . If the 

cone is convex (ie, if 
1 1 2 2
x xl l+ Î   for all 

1 2
,x x Î  , 

1 2
, 0l l ³ ), it is a 

convex cone. 

 Example: The conic hull of the points nÌ   consists of the 

points 
1 1 k k
l l+ +x x , where k > 1, { }

i
Ìx   and ³0l . It is a 

convex cone. 

 Example: Given a norm on n , the norm cone 

{ }1( , ) :n tt +Î £x x  

is a convex cone in 1n+ . When the norm in question is the 2-

norm, the cone is called the second-order cone. 

 Example: The set of positive semidefinite matrices 

{ }: 0,n nnS X X X X´
+ = =Î    

is a convex cone in n ń  called the positive semidefinite cone. 

o Hyperplanes and halfspaces 

 Definition: A hyperplane is a set of the form { }:n ⋅Î =x a x b , where 

\ { }nÎa 0  is called the normal vector. Hyperplanes are affine and 

therefore convex. 

 Definition: A halfspace is a set of the form { }:n ⋅Î £x a x b . 

Halfspaces are convex but not affine. 

o Definition: A norm is a real valued function  ⋅  on n  such that 

 0 == x x 0  

 For all nÎx   and l Î  , l l=x x  

 For all 
1 2
, nÎx x  , 

1 2 1 2
£+ +x xx x  

Examples of norms: 
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 The L2-norm (Euclidean norm): 2

12

n

ii
x

=
= = ⋅åx x x  

 
G
= Gx x x  (when 0G   and symmetric) 

 The p-norm: ( )
1/

1
| |

p
n p

ii
x

=
= åx  for p > 1 

 { }1
max | | , |, |

n
xx

¥
=x   

Given a norm, the (closed) ball with centre x0 and radius r > 0 is 

{ }0
:n rÎ - £x xx  , and it is convex. 

o Theorem (projection): Let nÌ   be a closed and non-empty convex set, and 

consider the Euclidean norm. Fix the vector nÎx  . Consider the problem 

min

s.t. nÎ

-

Ì

z x

z 
 

For every nÎx  , the problem has a unique global minimum *x  called the 

projection of x onto  . A vector ¢ Îx   is equal to *x  if and only if 

( ) ( ) 0¢ ¢- ⋅ - £ " Îx x z zx   

Geometrically, the angle between ¢ x x  and ¢ x z  must be larger than 90o 

for all points in the set: 

 

Proof: Existence follows from the fact -z x  is coercive and   is closed. 

Uniqueness follows because minimizing -z x  is equivalent to minimizing 

2
2- = ⋅ - ⋅ + ⋅z x z z z x x x , which is strictly convex. 

 

Now, consider that * *( ) 2( )f = -x x x . By necessary and sufficient conditions 

for convex optimization problems (derived later), the condition in the theorem 

must hold. 

¢x

x

z
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Application: Suppose we want to approximate f(x) over a set of points 

{ }1
,,

m
x x  using 

1
( ) ( )

k
g r f

=
= åx x 

, where the 
i

f  are basis functions and r is 

a vector of weights. One way to do this is to solve the problem 

{ }

2

1
min ( ) ( )

s.t. ( ) is a linear combination of ( )

m

i ii
f g

g f
=
é ù-ê úë û

⋅ ⋅
å x x



 

Consider the matrix 
,

( )
i i

fF = x   and the vector y, ( )
i i

y f= x . This problem is 

equivalent to 

{ }
min

s.t. : k

-

Î F Îr

z

r

y

z 
 

This is a projection problem, and so a unique optimizer exists. 

Existence of solutions 

 Theorem – Sufficient Conditions (Weierstrass): Consider the problem 

min ( ) s.t. nf x Î Ìx  . Then if  

o   is non-empty 

o f is lower semicontinuous over   

and one of the following conditions hold: 

1.   is compact 

2.   is closed, and f is coercive 

3. There exists a scalar g  such that the level set ) {( : ( ) }fg gÎ= £x x   is 

nonempty and compact. 

then the set of optimal minimizing solutions of f is non-empty and compact. 

Proof: 

o 1 3 : define 
* inf ( ) { }

x
f f x

Î
Î È ¥= -

  (this always exists). Then, given 

*fg > , the level set : ( ) }{ f gÎ £xx   must be non-empty. By the continuity of 

f, it is also closed. Thus, since   is compact, so is this set. 

o 2 3 : Define ) {( : ( ) }fg gÎ= £x x  . Since f is coercive, ( )g  is non-empty 

and bounded for any 
*fg > . Furthermore, since the domain of f (ie:  ) is 
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closed, ( , ]g-¥  is closed and 
( )1( ) ( , ]fg g-= -¥

, ( )g  is also closed. Thus, 

( )g  is compact. 

o 3 : Given a sequence of real numbers 
{ }

k
g

 with 
*

k
fg 

, the set of optimal 

solutions is 

( )*

1
k

k

g
¥

=

=    

By a theorem stated above, the intersection of these nested, non-empty compact 

sets is also non-empty, and compact. 

Note that the lower semicontinuity of f was only used in proving that ( )g  is closed. 

 Example: consider 1
2

in  ,m G - Îx b x xx   . If l  is the smallest eigenvalue of G , we 

have 
22

2
1 lG - ³ -x x b x x b x  , which is coercive if 0l > . Thus, a solution exists if 

0G   (ie: it is positive definite). 

Unconstrained local optimality 

 In this section, we consider the problem min ( ) s.t. nf x Î Ìx  , but we focus on 

minima that lie in the interior of  . In other words, unconstrained minima. 

 Local optimality 

o Theorem – necessary conditions: let * intÎx   be an unconstrained local 

minimum. Then 

 If f is continuously differentiable in a neighborhood of *x , then 

*( )f =x 0  

 If f is twice continuously differentiable in a neighborhood of *x , then 

2 *( ) 0 [Positive semidefinite]f x   

Geometrically, we simply require that the tangent at the said point be horizontal, 

and also that the tangent underestimate the curve in the neighborhood of the 

stationary point (in other words, the curve should lie above the tangent). 

Proof: 

 First order : fix \ { }nÎd 0 . By the definition of the gradient, 
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* *

0

* *

0

*

*

( ) ( )
lim 0

( ) ( )
li

( )

(m )

f

f

f f

f f

a

a

a a
a

a
a





+ - -
=

+ -
=

 ⋅

 ⋅

x d x

d

x

d

x
d

x

x
d

 

If *x  is a global optimum, the LHS must be positive for small enough a . 

Thus, *( ) 0f ⋅ ³x d . Since d is arbitrary, we must have *( ) 0f =x . 

 Second order : fix nÎd  . For sufficiently small a : 

2 2 * 21
2

2 2 * 21

* *

2

( ) ( ) ( )

( )

( ) ( )

( )

T

T

f f of

o

f

f

a a a a

a a

 ⋅ +  +

= 

- =

+

+x d x x d d x d

d x d
 

If *x  is a global optimum, the LHS must be positive for small enough a , 

and so 

2 2 * 21
2

2
2 *1

2 2

( ) ( ) 0

( )
( ) 0

T

T

f o

o
f

a a

a
a

 + ³

 + ³

d x d

d x d
 

Taking limits as 0a  : 

2 *( ) 0T f ³d x d  

Since d is arbitrary, this leads to our result. 

o Theorem – sufficient conditions: Consider a point * intÎx  . If f is twice 

continuously differentiable in a neighborhood of *x , and 

** 2 ( )( ) 0 0f f =  xx   

Then *x  is a strict unconstrained local minimum. The geometric interpretation is 

as above – the only difference is that we now require a positive definite instead of 

a positive semidefinite matrix. 

Proof: Let 0l >  be the smallest eigenvalue of 2 *( )f x , and let ( ) \ { }
r

NÎ 0 0d  

( )
( )

( )
( )

* * 21
2

* 21
2

2 21
2

2

2

* *

2

( ) ( ) || ||

( ) || ||

|| ||

|| ||
|

( ) ( )

| ||
2 || ||

T

T

f f o

f

f

o

o

f

o

l

l

 ⋅ +  +

=  +

³ +
æ ö÷ç ÷ç ÷= +ç ÷ç ÷ç ÷÷çè

=

ø

+ - x d d x d d

d x d d

d d

d
d

d

x d x

 

Now, for any (0, )g lÎ , there exists (0, ]re Î  such that 
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2

2
 with || |

(|| ||)

2 | |
|

2| |

o g
e

l
³+ " <d d

d

d
 

And this means that 

* 2 ** (( )) || || ( )
2

f ff
g

³ ++ >x dd xx  

 Using the necessary conditions 

o Verify there is a global minimum (using the existence theorem). 

o Find the set of possible unconstrained local minima using ( )f =x 0 . 

o Compare these points with all points on the boundary \ int  . 

o Example: Consider 1
2

min nÎ
G -

x
x x b x


   and 0G  . By an earlier theorem, 

global minima must exist. Furthermore, \ int   is empty, and so the global 

minimum must be an unconstrained local minimum. The first order necessary 

conditions immediately allow us to characterize that point as *G - =x b 0 . 

 Sensitivity analysis 

o Consider the problem min  ( , )  s.t.  nf x Îx a  . We let *x  be a local optimum, 

and * *( ) ( ( ), )f f=a x a a . The first-order conditions are 

*( ( ), )
x
f =x a a 0  

Taking the derivative with respect to a, we obtain 

* 2 * 2 *( ) ( ( ), ) ( ( ), )
xx xa
f f  + =x a x a a x a a 0  

From this expression, we can obtain expressions for the sensitivity of the 

optimum, and of the optimal value: 

{ }
1

* 2 * 2 *( ) ( ( ), ) ( ( ), )
xa xx

f f
-

 = - x a x a a x a a  

* * * * * *( ) ( ( ), ) ( ) ( ( ), ) ( ( ), ) ( ( ), )
a x a a

f f f f f =  =   + = a x a a x a x a a x a a x a a  

o The implicit function theorem tells us when this exists. 

Constrained local optimality 

 Consider the problem min  ( ) s.t. nf x Î Ìx  . We are interested in characterizing local 

minima that are not in int . We will assume, though, that f is continuously 

differentiable in a neighborhood of the point considered. 
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 Definition: The set of descent directions of f at *x  is the set 

{ }* *( ) : ( ) 0nd f= Î  ⋅ <x x d . 

 Definition: The tangent cone *( )x  of the constraint set   at *x  is the set of 

directions nÎd   such that either 

o =d 0  

o There exists a sequence *,{ }
kk

Ì xx x  such that 

*

*

k

k

-


-

x x d

dx x
 

Geometrically, this is simply the statement that d is tangent to   if and only if there is 

some walk we can take in   that leads us to *x  and that ends up being in direction d. 

For example: 

 

 Theorem – necessary condition: If *x  is a local minimum, there is no descent 

direction in the tangent cone: 
* *( ) ( )Ç = Æx x   

Geometrically, the tangent cone contains the “directions in which we can move”. The set 

of descent directions contains the “directions in which we can improve our objective”. If 

any direction fulfils both these conditions, then we can clearly improve on our current 

point. 

Proof: Consider *( ) \ { }Î xd 0  and an appropriate sequence *,{ }
kk

Ì xx x . Define 
*

*
0k

k k k

k

-
= -  = + 

-

x x d
d d d d

dx x
z z  

Now, if 
k

x  is a point on the line segment between 
k

x  and *x , the mean value theorem 

tells us that 
** () ) )( ( ( )

k kk
ff f -= + ⋅x x x x x

 
Note, however, that we can write 

1
x

2
x



*( )x

*x
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( ) ( )
* *

* k k

k k k

- -
- = + =

x x x x
x x d d d

d d
z  

And so we can re-write the above as 

*

*( ) ( ) ( )
k

k kk
f ff

-
=  ⋅+

x x
xx x d

d
  

Now, if *( )Îd x  as well, then *( ) 0f ⋅ <x d . The strict inequality implies that this is 

also true in a neighborhood of *x , and so for k large enough, we get *( ) ( )
k

f f<x x . This 

contradicts the local minimality of *x . 

 Unfortunately,   is hard to characterize algebraically, unless we focus on the particular 

example where   is the intersection of equality constraints. 

Equality constrained optimization 

 Consider the problem min  ( ) s.t. ( ) , nf = Îx h x 0 x   where : n mh   . We assume 

the f and hi are continuously differentiable in a neighborhood of the local minimum. 

 In this particular case, we will show we can characterize   in a simple way. The 

intuition behind our result is that for any feasible x, nÎd   and 0a >  

( ) ( )( ) ( )a a a»  = + + h x d hh x d dh xx    

So intuitively, one might expected that any direction for which ( ) =h x d 0  to 

maintain feasibility. We now formalize this statement… 

 Definition: the cone of first-order feasible variations at * nÎx   is the set 

{ }* * *:( ) ( ) ker ( )nd é ù= Î  = = ê úë ûx h x d 0 h x    

Note that * *( ) ( )Î - Îx dd x  . As such, *( )x  is actually a subspace of n . 

 Definition: A point * nÎx   is a regular point if it is feasible and the constraint 

gradients *( )
i

h x  are linearly independent. In other words, *( ) 0 ¹h x . If  

m > n, no regular points exist, and if m = 1, this reduces to *

1
( )h ¹x 0 . 

 Lemma (regularity): Let *x  be a regular point. Then * *( ) ( )=x x   

Proof: This theorem is hard. The intuition behind the proof is 

o Consider the curve we would trace if we were sitting at a point *x  and we 

started walking forward or backwards while staying on the constraint (ie: while 

keeping the constraint satisfied). We’ll start by showing that for any direction 
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*( )Îd x , there is such a path that starts by walking forward or backward along 

the direction d. 

o Once we’ve established this, the result is relatively easy, because the path 

constitutes a “walk” fully contained in our set   which eventually ends up being 

in the direction d. It’s therefore in  . 

And now the painful details! First, let’s find the curve in question: 

o Begin by choosing *( )Îd x . Given a scalar t, consider the curve *( )t t= +x x d . 

This satisfies our requirement that we be moving either side of *x , and that we 

start by going in direction d. However, there’s no guarantee we stay on the 

constraints. 

o Instead, consider the path * *(( ) ( ))t t t= + +h x ux x d  for some unknown vector 

( ) mt Îu  . This seems sensible – we are correcting our path to reflect how h 

might change. For x(t) to be “valid”, we require it to satisfy the m equations 

( )* *( ) ( )tt + =+h x h x ud 0  

For t = 0, u(0) = 0 is clearly a solution. 
 

Now, take the gradient of the boxed equation with respect to u and evaluate it at 

(t, u) = 0. We get 

* *( ) ( ) h x h x  

Since the columns of *( )h x  are linearly independent, this matrix is invertible. 
 

The two results above allow us to use the implicit function theorem to deduce 

that a solution u(t) to the boxed equation exists for all ( , )t t tÎ - , for some t . 
 

Thus, we have managed to find a curve ( )tx  that keeps us on the constraints and 

that is defined over ( , )t t tÎ -  with *(0) =x x  (this implies that the curve 

represents moving forward and backward from *x ). 

o All we now need to prove is that the initial direction in which we move is d. To 

do that, differentiate the boxed equation above with respect to t and evaluate at 

t = 0. We get 
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( ) **(0 ( )) ( )+   =d u h x h 0x    

But since *( )Îd x , we also have that *( ) =d h x 0 , and so (0) =u 0 , and 

(0) =x d , as required. 

o [It will be useful for later to note that if ( )⋅h  is twice continuously differentiable, 

then so is ( )⋅x . Though I’m not quite sure how to prove that result]. 

We now have our elusive curve! Let’s now prove the theorem. 

o * *( ) ( )Ìx x  : choose *( ) \ { }Î xd 0  and let x(t) be the curve discussed 

above. Take a sequence (0, ), 0
k k

t ttÌ  , so that *( )
k
t ¹x x . Then, by the mean 

value theorem, there is some [0, ]
k

t tÎ  such that 

*

* *

( ) (0)

( )

( ) (

( )( )

/

( )

)

0
kk

k

k k k

t

t t

t

tt

t

t- =

-

- -

-

=

x x

x

x

x x

x x x x


  

As 0
k

t   and therefore 0t  , this tends to 

(0)

(0)
 =

x d

x d




 

So *( )Îd x . 

o * *( ) ( )Ìx x  : consider *( ) \ { }Î xd 0  and an associated sequence { }
k

x  in 

the feasible set, as defined in the definition of *( )x . By the mean value 

theorem, there is some *[ , ]
k

Îx x x  such that 

**( ) ( () ( ) )
kk

 -- = hh x h x xx x   

But since *x  and every 
k

x  are in the feasible set, *( ) ( )
k

= =h x h x 0 , and 

* * *

*

*

*

( ) ( ) ( ) ( )0 ( ) (

( )

( )

)

0

k k k k

k

k

k

k

 - =  -

-


= = +

=
-

  =

h x x x h x x x

x x
h x

x x

h x h x

h x d 0

 



 





 

And so *( )Îd x . 

{Done! Take a deep breath!} 

 Theorem – necessary condition: If *x  is a local minimum that is a regular point, 

then there is no descent direction that is also a first order feasible variation: 
* *( ) 0  ( )f ⋅ = " Îx d d x  



Foundations of Optimization Notes Page 16

 

 
Daniel Guetta

Or in other words, we require *( )f x  to be in *( )^x : 

* * * *( ) ( ) ker ( ) im ( )f
^

^ é ù Î =  = ê úë ûx x h x h x  

Or in other words, there exists mÎl   such that * *( ) ( ) f = x h x l . 

Proof: Since *x  is a local minimum, * *( ) ( )Ç = Æx x  , and since *x  is regular, 

* *( ) ( )Ç = Æx x  . 
 

Now, assume *( )Îd x  – by what we have such said, *( )Ïd x , and so *( ) 0f ⋅ ³x d . 

However, since we also have *( )- Îd x , we must have *( ) 0f ⋅ =x d . 
 

For the last part of the theorem, note that im (ker )A A ^=  , as proved in the 

introductory section of these notes. 

 The last part of the previous theorem is important, because it provides a “simple” way 

to characterize the tangent cone, and a “recipe” to find optimal points. This can be 

formalized further using… 

 …Lagrange Multipliers 

o Theorem – necessary conditions: If *x  is a local minimum that is a regular 

point, then there exists a unique vector * mÎl   called a Lagrange multiplier 

such that 

* * * * * *

1
( ) ( ) ( ) ( )

m

i ii
f f hl

=
 +  =  +  =åx h x x x 0l   

In addition, if f and h are twice continuously differentiable 

( )2 * * 2 * *

1
( ) ( ) 0 ( )

m

i ii
f hl

=
 +  ³ " Îåx x dd d x   

 

There is an interesting geometrical interpretation of the first-order condition. It 

effectively states that *( )f x  [the direction in which we might increase our 

objective] must be a linear combination of the *( )
i

h x  [the perpendicular to the 

constraints *( ) 0
i

h =x ]. Since we cannot move along any of those perpendiculars 

without leaving the constraints, we clearly cannot move along *( )f x . Here is an 

example, in which ( )f x  is constant: 
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Proof: The existence of *l  is simply a restatement of the previous theorem. The 

uniqueness of *l  follows from the fact that the columns of *( )h x  are linearly 

independent. 
 

For the second-order condition, consider a *( )Îd x , and use the first part of 

the regularity lemma to define a path ( )tx  either side of *x , which always stays 

on the constraints and such that (0) =x d . Now, define ( ) ( ( ))g t f t= x  and take a 

double derivative 

2( ) ( ) ( ( )) ( ) ( ) ( ( ))g t t f t t t f t=  + x x x x x      

Since all points x(t) satisfy the constraints of the problem, and *x  is a local 

minimum, t = 0 must be an unconstrained local minimum of g(t). Thus 

2 * *(0) ( ) (0) ( ) 0g f f=  +  ³d x d x x    

Finally, consider *( ) ( ( )) 0t h t= =xl   and differentiate it twice, to get 

( )1

2 * * *(0) (0)( ) ( ) 0
m

i ii
xh hl

=
= =+ åd x d x l     

Finally, add the last two equations, and apply the first order condition. 

o We define the Lagrangian as 

( ), ( ) ( )f= + ⋅x x h xl l  

The first and second order conditions then reduce to 

* *

2 * * *

( , ) 0

( , ) 0 ( )d

 =

 ³ " Î
x

xx

x

d x d x

l
l



 
 

And the feasibility condition is given by 

* *( , ) 0 =xl l  
 

2

{ }: ( ) =x h x 0

( )f x
(Darker shading implies 

larger value of f) 

*( )h x

*x
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This formulation of the first order conditions also has an interesting 

interpretation. We effectively allow the constraint h(x) = 0 to be broken, but we 

associate a cost l  with breaking it. We then apply unconstrained first-order 

conditions to the resulting problem. 

o As such, we have the following simple recipe to solve an equality-constrained 

problem (assuming f and h are continuously differentiable on n ): 

 Check that global minima exist 

 Find the set of * *( , )x l  satisfying * *( , ) 0 =
x

x l  and * *( , ) 0 =xl l . 

 Find the set of non-regular points 

 The global minima are amongst these points. 

A few examples: 

 2 2

1 2 1 2

2min ( )  s.t. ( ) 2 0,f x x h x x= + = + - = Îx x x  . In this case, note 

that 
1 2

(2 ,2 )h x x = ; thus, provided the constraints are met, all points 

will be regular. In this case, 2 2

1 2 1 2
( , ) ( 2)x x x xl l= + + + -x , and since 

all points are regular, we simply need to consider all points satisfying the 

first-order conditions and choose the smallest one. 

 Consider the problem 

1 2
2 2

1 1 2
2 2

2 1 2
2

min ( )

s.t. ( ) ( 1) 1 0

( ) ( 2) 4 0

f x x

h x x

h x x

= +

= - + - =

= - + -

Î

=

x

x

x

x   

The only feasible point is (0, 0) – and so it is the global minimum. 

However, it is not a regular point. And indeed, we find that there is no 

solution to the first-order necessary conditions. 

o Constraint qualification: In summary, what we have proved so far is  

*

* *

* *

local minimum

( ) ( )

( ) ( )

Lagrange multipliers exist

 Ç = Æ

 Ç = Æ


x

x x

x x



 

 
 

In proving this sequence of statements, we made use of the fact that *x  was a 

regular point. However, it is possible to prove the existence of Lagrange 
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multipliers under weaker assumptions called constraint qualifications. If the 

constraints are linear, for example, Lagrange multipliers are guaranteed to exist. 

The weakest form of constraint qualification is quasiregularity, which requires 

that * *( ) ( )=x x  . 

o Theorem – Sufficient Conditions: Assume that f and h are both twice 

continuously differentiable, and that * nÎx   and * mÎl   satisfy 

* *

* *

2 * * *

( , )

( , )

( , ) 0 ( ) \ { }

L

L

L

 =

 =

 > " Î

x

xx

x 0

x 0

d x d d x 0
l

l
l

l 

 

Then *x  is a strict local minimum. 

Proof: The second condition above implies that *x  is clearly feasible. Suppose it 

is not a strict local minimum; then there exists a sequence { } n

k
Ìx   such that 

*

k
¹x x  and *

k
x x  which lies entirely in the feasible region of the problem [ie: 

( )
k

=h x 0 ] and *( ( ))
k

f f£ xx . We define, for some d 

*
*

*
0k

k k k

k

d
-

=  = - 
-

x x
d d x x

x x
 

Now, by the mean value theorem, there exists *[ , ]
k

Î xx x  with 

* *(( ) ( ) ) ( ) ( ) ( )
k k kk k k

d - = - = h x xh x x x dh hx     

But since *x  and 
k

x  are feasible, *( ) ( )
k

= =h x h x 0 , so. 

( ) 0
k k

 =h x d   

Taking the limit as k  ¥ , we get *( ) 0 =h x d , and so *( )Îd x . 
 

Now, we know that 

*( ) ( ) ) 0(
k k

f= £-h x 0 f x x  

Using a second order Taylor expansion (with remainder) with some set of 

* ]ˆ [ ,i

k
Î x xx , we can re-write these as 

* 2 21
2

*( ˆ( ) ( )) 0) ( i

i k i i k kk k i k
h h h hdd=  +  =+ ⋅x d xx d dx   

* * 2 2 01
2

ˆ( ) ( ) ( ) ( ) 0
k k k k k k

f f f fd d- =  ⋅ +  £x x x d d x d  

We can modify the first set of equations slightly by remembering that *( ) 0=h x , 

and multiplying both sides of the equation by *

i
l . This gives 
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* 2 * 21*

2
( ) ˆ( ) ( ) 0i

i k ki kk i ik ki
hh hl d ld  ⋅ = + =x xx d d d  

Adding these m + 1 equations, we get 

( ) ( )
( )

* * * 2 2 0 * 21
21 1

* * 2 2 0 * 21
2 1

ˆ ˆ( ) ( ) ( ) ( ) 0

ˆ ˆ( , ) ( ) ( ) 0

m m i
i i k k k i i ki i

m i
k k k

k

k i i ki

f h f h

L f h

d

d

l d l

d l

= =

=

 +  ⋅ +  +  £

 ⋅ +  +  £

å å
åx

x x d d x x d

x d d x x dl




 

Noting that, by the first order conditions, * *( , )L
x

x l  and then dividing by 21
2 k
d  

and taking the limit as k  ¥ , this becomes 

( )2 * * 2 *

1
( ) ( ) 0

m

i ii
f hl

=
 +  £åd x x d  

But since *( ) \ { }Î xd 0 , this violates our assumed second order condition. 

o We now consider an application of these conditions. Consider the program  

2min  s.t. 1,n s m
Î

= G = =
x

x x 1 x xm


    

which might represent minimizing the variance in a portfolio while keeping total 

sales equal to 1 unit, and keeping the expected return equal to a certain value m . 

The first-order conditions give 

* * * * *

1 2
2 1,l l mG + + = =x 1 0 1 x xm= m   

From the first equation, we obtain 

* 1 * 1 *1 1
1 22 2

* 1 * 1 *1 1
1 22 2

* 1 * 1 *1 1
1 22 2

1

l l

l l

l l m

- -

- -

- -

= - G - G

=- G - G =

=- G - G =

x 1

1 x 1 1 1

x 1

m
m

m m m m

  

  

 

The last two equations are a system of equations for * *

1 2
( , )l l : 

1 1 *

1
1 1 *

2

11

2

l
ml

- -

- -

æ öæ ö æ öG G ÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç- =÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çG G ÷ ÷ ÷ç÷ ÷ç ç è øè øè ø

1 1 1

1

m
m m m

 

   

this system is nonsingular provided that 0G   and 1  and m  are linearly 

independent. We then get 

*

1 1 1
*

2 22

l h z m
h z ml

æ ö æ ö+÷ ÷ç ç÷ ÷ç ç=÷ ÷ç ç÷ ÷ç +ç÷ ÷ç÷ç è øè ø
 

Where the constants depend on G  and m . Now, using the first equation in the 

FOCs, we obtain, for some vectors v and w 

* m= +x v w  
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which finally gives, for some constants , ,a b g  depending on G and m  

( ) ( ) ( )22s m m am b g= + G + = + +v w v w


 

This implies that of all the possible asset combinations, those that provide the 

maximum expected returns for a particular variance lie on a parabola that looks 

like this: 

 

The upper part of this parabola is called the efficient frontier. 

 Sensitivity analysis 

o We now look at what happens when we slightly vary our constraint. 

o Theorem: Consider a family of equality-constrained problems 

min ( ) s.t. ( )n f
Î

=
x

x h x u


. Suppose there exists a local pair * *( , )x l  satisfying 

the second-order sufficient conditions when u = 0, and *x  is regular. Then there 

exists a neighborhood (0) mNe Ì   of u = 0 and a function *( )⋅x  defined on that 

neighborhood such that 

 * *( ) =x 0 x , and for each (0)NeÎu , *( )x u  is a strict local minimum. 

 *( )x u  is continuously differentiable. 

 If *( ) ( ( ))p f=u x u , then *( )p =-0 l . 

The last part of the theorem is the interesting one – it tells us that changing u 

by an infinitesimal amount around our solution point will lead in a change of 

*-l  in the objective. 

Proof: Consider, for mÎu  , the following system of equations in ( , )x l , 

representing the first-order sufficient conditions: 

( ) ( )

( )

f + =
- =

x h x 0

h x u 0

l
 

Let’s carefully calculate the gradient of this system 

m

s
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{ } { }
{ } { }

( , ) ( )( ) ( ) ( )

( ) 0( ) ( ) ( )

Lf

f

é ù é ù   +  -ê ú ê ú=ê ú ê ú  +  -ê ú ê úë ûë û

xx xx x
x h xx h x h x u

h xx h x h x ul l

ll
l   

Clearly, the system above has a solution at * *( , )x l , and at that point, the 

gradient is given by 

* * *

*

( , ) ( )

( ) 0

L
J

é ù ê ú= ê úê úë û

xx x
x h x

h x

l
  

Now, if this matrix were singular, there would exist some nonzero vector 

( , )=x y z    such that J =x 0 . This implies that 

2 * * *

*

( , ) ( )

( )
xx x
L + =

 =

x y h x 0

h x y 0

l


 

The second equation implies that *( )Îy x . Multiplying the first equation by 

y  and using the second equation implies that we would then have to have 

2 * *( , )
xx
L =y x y 0l  for some *( )Îy x ; this violates the second-order sufficient 

conditions. Thus, our matrix is nonsingular. 
 

Using the implicit function theorem, this implies that we can define 

( )* *( ), ( )x u ul  satisfying first-order conditions for all u in some ( )Ne 0 . Second-

order conditions follow, for u sufficiently close to 0, by continuity assumptions. 
 

For the last part of our theorem, consider the FOCs in terms of this 

( )* *( ), ( )x u ul , and multiply them by *( )x u : 

* * * * *

* * * *

( ) ( ( )) ( ) ( ( )) ( )

( ( ) ( ) ( ( )) ( )
u

f

f

é ù é ù  +  =ê ú ê úë û ë û
é ù +  =ê úë û

x u x u x u h x u u 0

x u x u h x u u 0

l

l
 

Note also that differentiating *( ( )) =h x u u  with respect to u yields 

* *( ) ( ( ))
u x

I  =x u h x u . Using that result, we can re-write the previous equation 

as 

* *

* *

( ( ) ( )

( ( ) ( )
u

u

f I

f

 + =

 =-

x u u 0

x u u

l
l

 

As required. 
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Inequality constrained optimization 

 Consider the program 

min ( ) s.t. ( ) , ( )n f
Î

= £
x

x h x 0 g x 0


 

Where : nf   , : n mh    and : n rg   . Note also that when we say £x 0 , 

we mean that every component of x is less than or equal to 0. 
 

We also assume that f, h and g are continuously differentiable on n , though the 

necessary and sufficient conditions also hold if these are defined and continuously 

differentiable only in a neighborhood of the local minimum. 

 Definition: Given a feasible point * nÎx  , the set of active inequality constraints 
*( )x  is defined as 

{ } { }* *( ) : ( ) 0 1, ,
j

j g r= = Íx x   

 Lemma: Let *x  be a local minimum for the inequality constrained program above 

(IneqCP). Then it is also a local minimum for the following equality constrained 

program (EqCP): 
*min ( ) s.t ( ) ,  (0 )( )n j

f g j
Î

= = " Î
x

x h x 0 x x


  

Proof: Suppose *x  is not a local optimum for EqCP. Then there exists a sequence of 

points { }k
x  feasible for EqCP such that *

k
x x  and *( ) ( )

k
f f<x x . 

 

Since g is continuous, we have *( ) ( )
k

g x g x . In particular, if *( )j Ï x , 

*( ) ( ) 0
j k j

g g <x x . Thus, for sufficiently large k, xk is feasible for IneqCP. This 

contradicts the local optimality of x* for IneqCP. 

 Definition: Consider the inequality constrained program above. A point * nÎx   is a 

regular point if it is feasible and if the set of constraint gradients 

{ } { }* * *( ) : 1 ( ) : ( )
i j

h i m g j £ £ È  Îx x x  

are linearly independent. 

 Definition: The cone EQ *( )x  at the point * nÎx   is the set of vectors nÎd   such 

that 
*

* *

( ) 0 1

( ) 0 ( )
i

j

h i m

g j

 = " £ £

⋅ = " Î

⋅d x

d x x
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Intuitively, it is the set of points in which we can move while keeping the equality 

constraints and the active inequality constraints satisfied. 

 Theorem (Karush-Kuhn-Tucker Necessary Conditions): If *x  is a local 

minimum that is a regular point, then there exists unique Lagrange multiplier vectors 
* mÎl   and * rÎm   such that 

* * * * *

1 1

* *

( ) ( ) ( )

0 ( )

m r

i i i ji j

j

j

f h g

j

l m

m

= =
 +  +  =

³

= " Ï

å åx x x 0

0

x

m


 

In addition, if f, h and g are twice continuously differentiable, then 

( )* * *2 2 * 2 EQ **

1 1
( ) ( )( ) 0 ( )

m r

i jji ji
f ghl m

= =
 + + ³ " Îå åx dd x x d x   

 

There is an interesting geometrical explanation of the first-order conditions. First, 

consider that 

o Because the h are equalities, we cannot move along ( )
i

h x  [the perpendiculars 

to the equality constraints] in any direction (either forwards or backwards). 

o Because the active constraints are < inequalities, we can move along 

( ), ( )
i

g i Îx x  [the perpendiculars to the active inequality constraints] only in 

the negative direction. Moving along + ( )
i

g x  would leave the feasible region. 

o Inactive constraints are not tight, and so we can move both forwards and 

backwards along ( ), ( )
i

g i Ïx x . 

All the first-order condition states is that there is no way to move in such a way that we 

remain in the feasible region and decrease *( )f x . Mathematically, the conditions states 

that *( )f- x  [the direction which would decrease *( )f x ] must be composed entirely of 

o A linear combination of the perpendiculars to the equality constraints (along 

which we cannot move). 

o A positive linear combination of the perpendiculars to the active inequality 

constraints (along which we cannot move). 

o [No perpendiculars to the inactive inequality constraints, because we could move 

along those]. 
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Proof: Everything follows from applying Lagrange multipliers to the equality 

constrained program, except for the fact that * 0
j

m ³  for all *( )j Î x . 

 

To see why this is the case, assume that this does not hold for some *( )j Î x . Then let 

n
j
Ì   be the set of points feasible for all other active constraints, and let EQ *( )

j
x  be 

the corresponding cone of first-order feasible directions: 

{ }
{ }

*

EQ * * * *

: ( ) , ( ) 0 ( ) \ { }

( ) : ( ) , ( ) 0 ( ) \ { }
j

j

g j

g j

= = = " Î

= ⋅ = ⋅ = " Î

x h x 0 x x

x d d h x 0 d x x








 

 
 

By regularity, there must exist a EQ *( )
j

Îd x  with *( ) 0
j

g <⋅ xd  (if it were the case 

that * EQ *( ) 0 ( )
j j

g = " Î⋅ x d xd  , then the point would not be regular, and if 

*( ) 0
j

g >¢ ⋅ xd  for some EQ *( )
j

¢ Îd x , then just take EQ *( )
j

¢= Î-d d x ). 

 

Then, by the regularity lemma, there exists a curve ( )
j

t Îx   with *(0) =x x , (0) =x d  

and such that ( )tx  is feasible for small t. Now, if we let ( ) [ ( )]t f t= x , we find that 

( ) ( ) [ ( )]t tt f= x x    

Evaluating at t = 0 

{ }
*

* * * *

1 1

* *

( )

( ) ( )

(

(

)

0)

0

m m

i i j ji j

j j

f

h g

g

l m

m
= =



=- +

=- 
<

=

å å
x

d x x

d x

d 





 

This contradicts the local optimality of *x . 

 Practically, we typically define a Lagrangian 

( ), , ( ) ( ) ( )f= + ⋅ + ⋅x x h x g xl m l m  

The first-order conditions then reduce to 

( )* * * * *

*

* *

, , ( ) ( )

( ) 0 1

x

j j
g j rm

 = = £

³

= " £ £

x 0 h x 0 g x 0

0

x

l m

m



 

For any given problem, then, we 

o Prove global minima exist 

o Find the set of * * *( , , )x l m  satisfying these FOC 
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o Find the set of non-regular points 

o Choose the point with the lowest objective. 

For example, consider the problem 

3

2 2 21
1 2 3 1 2 32

min ( ) s.t 3. x x x x x x
Î

+ + + + £-
x 

 

The objective and constraints are continuously differentiable, and minima exist (by 

coerciveness). The Lagrangian is 

( ) 2 2 21
1 2 3 1 2 32

, , ( ) ( 3)x x x x x xm= + + + + + +x l m  

The first-order conditions are 

( )* * *

*

* *

, ,

( )

( ) 0

x

j j
gm

 =

£

=

x 0

g x 0

x

l m

   







   

* * * * * *
1 2 3

* * *
1 2 3

* * * *
1 2 3

0

3

( 3) 0

x x x

x x x

x x x

m m m

m

+ = + = + =

+ + £-

+ + + =

 

The solution is * ( 1, 1, 1)= - - -x  and * 1m =  which satisfies 0m ³ . Furthermore, all 

points are regular, so this is the global minimum. 

 Theorem (KKT Sufficient Conditions): Assume that f, h and g are twice 

continuously differentiable, and that * * *, ,n m rÎ Î Îx l m    satisfy 
* * * * *

* * *

2 * * * EQ *

( , , ) ( ) ( )

0 ( )

( , , ) 0 ( ) \ { }

x

j

xx

jm

 = = £

³ = " Ï

 > " Î

x 0 h x 0 g x 0

0 x

d x d d x 0

l m
m

l m





 

 

Assume also that 

* *( )0
j

jm Î> " x  

Then *x  is a strict local minimum. 

Proof: We follow the equality case. Suppose *x  is not a strict local minimum. Then the 

exists * *{ } , ( ) , ( ,) ,
k k

n

kk k
Ì £ ¹ = 0 xx x xh g xx 0 x  with *( ( ))

k
f f£ xx . We define 

*

*

k
k

k

-
=

-

x x
d

x x
   *

k k
d = -x x  

Without loss of generality, assume 
k
d d . Using the same mean-value-theorem 

argument as in the sufficient conditions proof for Lagrange multipliers, we find that 

*( ) =h x d 0 . 
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Now, consider the g. If *( )j Î x , then *( ) 0
j

g =x , and so since xk is feasible, 

*( ) 0( )
j k j

g g £-x x . Furthermore, by the mean-value-theorem, 

* ** ( ) ( ) ( )( ) ( )
j kj k j k j

gg g g- =  -  x x x dx xx     

for some *[ , ]
k k
Î x xx . Together, these imply that 

*( ) 0
j

g £x d  

If the inequality is tight for all *( )j Î x , then EQ *( )Îd x , and we proceed as in the 

equality case. 
 

If, on the other hand, *( ) 0
j

g <x d  for some *( )j Î x , then 

* * * * *( ) ( ) ( ) 0f é ù = -  ⋅ + ⋅ >ê úë ûx d h g xd x l m   

[The inequality holds because *( ) 0
j

g <x d  whereas d dotted with every other gradient 

of h and g is 0, as we found above]. However, by the definition of our sequence, 

*( 0) ( )
k

f f £-x x , and by the mean value theorem, 

* * *( ) (( ( )) ) ) (
k k k

ff f f - - = x xx x x dx     

For some *[ , ]
k k
Î x xx . This implies that *( ) 0f £x d . This, together with the 

statement *( ) 0f >xd , is a contradiction. 

 Practical point of note: the problem above was a min problem with < inequalities, and it 

resulted in a positive Lagrange multiplier. If either of these facts changed (eg: max 

and/or >), the sign of the Lagrange multiplier required would be flipped. For 

consistency, it is then customary to change the way we define the Lagrangian to ensure 

the Lagrange multiplier remains positive; specifically, the term ( )
i

gm+ x  changes to 

( )
i

gm- x . 

 Sensitivity analysis 

o Consider the optimization problem 

min ( ) s.t. ( ) , ( )n f
Î

= £
x

x h x u g x v


 

o Theorem: Suppose there exists a triple * * *( , , )x l m  satisfying the second order 

sufficient conditions when ( , ) ( , )=u v 0 0 , with *x  regular. Then there exists a 

neighborhood N of ( , ) ( , )=u v 0 0  and a function *( , )⋅ ⋅x  defined on N such that 

 * *( , ) =x 0 0 x , and for each ( , ) NÎu v , *( , )x u v  is a strict local minimum. 
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 *( , )⋅ ⋅x  is continuously differentiable. 

 If *( , ) [ ( , )]p f=u v x u v  

* *( , ) ( , )p p =-  =-
u v

0 0 0 0l m  

 Existence of Lagrange Multipliers 

o Theorem (Farkas’ Lemma): Consider a matrix m nA ´Î  . Then a vector 

mÎz   satisfies 

0£⋅z y  for all mÎy   such that A =y 0  

if and only if 

A=z x  for some nÎx   with x > 0 

o Theorem: Consider the standard inequality optimization program above. Let *x  

be a local minimum. Then there exists Lagrange multipliers * *( , )l m  satisfying 

the FOCs 

* * * * *

* * *

( ) ( ) ( )

( ) 0  1
j j

f

g j rm

 + + =

³ = " £ £

x h x g x 0

0 x

l m
m

 

If and only if 

* EQ *( ) ( )Ç = Æx x   

Proof: Suppose there are no equality constraints. Then * EQ *( ) ( )Ç = Æx x   is 

equivalent to 

*( )Ïd x  for all d such that EQ *( )Îd x  

{d must be “uphill} for every d {that keeps us in the feasible set} 

*( ) 0f ⋅ ³x d  for all d such that * *( ) 0 ( )
j

g j ⋅ £ " Îx d x  

By Farkas’ Lemma, this is equivalent to 

* *( ) ( )f + =x g x 0m  

For some m  with ³0m  and 0
j

m =  if *( )j Ï x . 

 

If there are equality constraints ( ) =h x 0 , we can replace them with inequality 

constraints ( )£h x 0  and ( )- £h x 0 . 

o Constraint qualification: In summary, what we have proved so far is  
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*

* *

* *

local minimum

( ) ( )

( ) ( )

Lagrange multipliers exist

 Ç = Æ

 Ç = Æ


x

x x

x x



 

 
 

In proving this sequence of statements, we made use of the fact that *x  was a 

regular point. However, it is possible to prove the existence of Lagrange 

multipliers under weaker assumptions called constraint qualifications. If the 

constraints are linear, for example, Lagrange multipliers are guaranteed to exist. 

The weakest form of constraint qualification is quasiregularity, which requires 

that * *( ) ( )=x x  . 

o Theorem (Linear Constraint Qualification): Consider the optimization 

program 

min ( ) s.t. n f A
Î

£
x

x x b


 

Suppose that x* is a local minimum. Then x* is quasi-regular and Lagrange 

multipliers exist. This trivially also applies to linear equality constraints, and can 

be extended to linear equality constraints and concave inequality constraints. 

o Theorem (General Sufficiency Condition): Consider the optimization 

program 

min ( ) s.t. ( )fÎW £
x

x g x 0  

Let * nÎx   be a feasible point, and * rÎm   be a vector such that 

* *

*

*

*

0 ( )

argmin ( , )
j

j

L

m

ÎW

³

= " Ï

Î
x

0

x

x x

m

m
  

Then *x  is a global minimum. Note that no differentiability or continuity 

assumptions were made. 

Proof: 

{ }
{ }, ( ) 0

* *

, ( )

*

*

0

*

*

min

mi

( ) ( ) ( )

min ( ) ( )

( ) ( )

( )n

f f

f

f

f

ÎW

ÎW £

ÎW £

= + ⋅

= +

+£

£
x g x

x g x

x

x x g x

x g x

x g x

x

m

m

m
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Optimization over Convex Sets 

 Consider the problem min ( )f x  subject to nÎ Ìx   where   is a convex set. 

 Theorem (necessary conditions): If *x  is a local minimum and f is continuously 

differentiable in a neighborhood of *x , then 
* *( ) ( ) 0f ⋅ - ³ " Îx x x x   

Geometrically, at a local minimum, the gradient of the objective function must make an 

acute angle with any improving direction (or else, we could improve along that 

direction), and since the set is convex, *-x x  must be an improving direction for any 

Îx  , since the line between x and x* is in  : 

 

Proof: Suppose that there exists an Îx   with * *( ) ( ) 0f ⋅ - <x x x . Consider applying 

the mean value theorem to the function * *( ) ( )g fe eé ù= + -ê úë ûx x x : 

( )* * ** * *

( ) (0) ( ) 0

( ) ( ( ) ( ))

g g g c

f f f s

e e

e e e

é ù¢- = -ê úë û
é ù+ - = +ê úë û  + - ⋅ -x x xx xx xx x

 

Where (0,1)s Î . Since f  is continuous, and * *( ) ( ) 0f ⋅ - <x x x , then fall all 

sufficiently small e , this will also be true of ( )* * *( ) ( ) 0f se + - ⋅ - <x x x x x . This, 

however, implies that * * *( ) ( )f f eé ù> + -ê úë ûx x x x . Since   is convex, this point is in  , 

and so this contradicts the optimality of x*. 

 Theorem (optimality for convex optimization): Suppose : nf    is convex 

over  . Then 

1. Any local minimum of f is also a global minimum. 

2. If f is strictly convex, then there exists at most one global minimum. 

Proof: Consider: 

1. Suppose *x  is a local minimum, and there exists some *¹x x  with 

*( ) ( )f f<x x . Then for any [0,1)l Î , then 



Contour of constant f

*x

*( )f x
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* * *((1 ) ) (1 ) ( ) ( )f ff fll llé ù+ -ê úë û £ + - <x x x xx  

Now: 

 Since   is convex, * (1 )l l+ - Îx x   

 For every small r, there will be a l  such that * *(1 ) ( )
r

Bl l- Î+ x xx

. The fact the value of f at that point is more than at *x  contradicts 

our local optimality assumption. 

2. Suppose 
10

¹x x  are two global minima. Then 

( ) ( )1 1
0 1 0 1 0 12 2

( ) ( ) ( ) ( ) ( )f f f f f+ < + = =x x x x x x  

This means there is a point at which f is strictly less than at x0 and x1, which 

contradicts our local optimality assumption. 

 Theorem (necessary & sufficient conditions): If  : nf    is convex over   

and differentiable and * Îx   is a feasible point, then *x  is globally optimal if and only 

if 
* *( ) ( ) 0f ⋅ - ³ " Îx x x x   

Proof: Necessity follows from the previous theorem. For sufficiency, note that 

* * * *( ) ( ) ( ) ( )( ) f f ff ³ + ⋅ - ³ " Îx x xx x x x   

Duality 

 Supporting & Separating hyperplanes 

o Definition: The hyperplane { }:n b=Î ⋅x xm  with \ {0}nÎm   supports the 

convex set nÌ   at the point x  if 

b=⋅ ³ ⋅ " Îx xxm m   

or equivalently 

inf
x

bÎ ⋅ ³ ⋅ =xxm m


 

This statement requires that (a) x  lies on the hyperplane, and (b)   lies 

entirely on one side of the hyperplane. 
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o Theorem (supporting hyperplane): Let nÌ   be a convex set and nÎx   

be a point that is not in the interior of  . Then there exists a supporting 

hyperplane at x . 

Proof: The intuition behind this proof will be to consider a sequence { }
k

x  of 

points outside the closure of   converging to x . This is possible, since intÏx  . 

We consider the projection of each of these 
k

x  onto   (denoted 
k̂

x ), and we 

consider the hyperplane perpendicular to the line from 
k

x  to 
k̂

x : 

 

We then show that 

 The set   lies on one side of each of these hyperplanes. 

 These hyperplanes tend to the supporting hyperplane of interest. In other 

words, x  lies on the limiting supporting hyperplane. 
 

Now, to the formal stuff. Define cl =  , and note that   is convex. Let { }
k

x  

be a sequence of points such that ,
k k
Ï  xx x , and for each 

k
x , let 

k̂
x  be its 

projection onto  . Then, by the projection theorem, 

( ) ( )ˆ ˆ 0
k k k
- ⋅ - ³ " Îx x x x x   

And this means that for all k and Îx  , 



x 1
x

2
x

3
x

1̂
x

2
x̂

3
x̂

Supporting hyperplane 

of interest 



m
x
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( ) ( )
( ) ( ) ( )
( )

ˆ ˆ

ˆ ˆ ˆ

ˆ

ˆ

k k k

k k k k k

k k

k k

k k k

³ - ⋅

= - ⋅ - + - ⋅

³

⋅

⋅

-

-

x x x x x x

x x x x x x x

x x x

 

More succinctly 

( ) ( )ˆ constantˆ
kk kk k

³ - ⋅ = " Î- ⋅x x x x x x x   

In other words,   lies on one side of each of those hyperplanes. 
 

But now, set 

ˆ

ˆ
k k

k

k k

-
=

-

x x

x x
m  

Then the equation above can be written as 

,
kk k

k x³ ⋅ Î⋅ "xxm m   

Since 1
k

=m , the sequence { }
k

m  is bounded has a non-zero subsequential limit 

m . Letting k  ¥ , we get 
k
m m  and 

k
x x , so 

,k"⋅ ³ ⋅ Îx xxm m   

As required. 

o Theorem (separating hyperplane): Let 
1 2
, nÎ    be two disjoint non-empty 

convex sets. Then there exists a hyperplane that separates them; ie: a vector 

, 0nÎ ¹m m  and a scalar b Î   with 

1 2 21 2 1
,b£ £ ⋅ " Î⋅ Îx x x xmm    

 

Proof: Consider the convex set 

{ }1 2 1 2 1 1 2 2
: ,x x x x= - = - Î Î      

1


m

2
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Since the two sets are disjoint, Ï0  . Thus, by the supporting hyperplane 

theorem, there exists a vector ¹0m  with 

( )1 2 1 1 2 2
,£ - " Î Îx x x0 xm    

Setting 
2 2 2

supb Î=
x

xm


, we obtain the desired result. 

o Theorem (strictly separating hyperplane): Let nÌ   be a closed convex 

set and Ïx   a point. Then there exists a hyperplane that strictly separates the 

point and the set. In other words, \ {0},n b$ Î Îm    such that 

infb Î⋅ < < ⋅
x

x xm m
  

 

Proof: Define minr Î= -
x

x x


. This will be > 0 because   is closed, and 

Ïx  . Now, let { }/: 2n r= Î £-x xx  . Clearly,   and   are disjoint, so 

we can apply the separating hyperplane theorem. Diagramatically: 

 

o Corollary: If n  is a closed convex set, then it is the intersection of all 

closed halfspaces that contain it. 

Proof: Let   be the collection of all closed halfspaces containing  , and let 

H
H H

Î
= 

. 

 

Since n¹  , the strictly separating hyperplane theorem implies that   is non-

empty (since there is a point nÎx   and Ïx  ) and clearly, C HÌ . 
 

Now, suppose there exists an HÎx  with ¹x  , then 



m

x




m

x
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 By the strictly separating hyperplane theorem, there exists a halfplane 

that strictly separates x and  , with x on the opposite side of the 

hyperplane as  . 

 Thus, HÏx . This is a contradiction. 

 Farkas’ Lemma 

o Lemma (Farkas): Consider a matrix m nA ´Î  . Given a vector mÎz  , the 

following statements are equivalent 

1. 0£⋅z y  for all mÎy   with A £0y . 

2. A=z x  for some nÎx   with ³x 0 . 

Geometrically, the two parts of this theorem are as follows: 

1. z makes an obtuse angle with all vectors y that make an obtuse angle 

with every column of A. 

 

2. z lies in the cone formed by the columns of A. 

 

Proof: Consider: 

 2 1  Dot both sides of the equation with y to get 

( ) 0A A⋅ = ⋅ = £z y x y x y  

Where the last equality follows because x is positive and 0A £y , by 

assumption. 

 1 2  Suppose z satisfies (1) [it makes an obtuse angle to y, which 

makes an obtuse angle to all the columns of A], but that there is no 

³x 0  with A=z x  [it lies outside the cone defined by the columns of A]. 

z

col 1A

col 2A

z

col 1A

col 2A

{ }: A £y 0y
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Then define { }: 0A= ³x x  to be the closed, convex cone formed by 

the columns of A. Clearly, ¹z  . 
 

By the strictly separating hyperplane theorem, there exists \ {0}mÎy   

such that "⋅ > Î⋅y z y c c  : 

 

 

We will show that this y forms an obtuse angle with all the columns of A, 

but an acute angle with z (thus contradicting [1]). 

 Obtuse angle with the columns of A: Note that col il ÎA  , 

and so col il⋅ > ⋅y z y A . This means that regardless how far we go 

along any of the edges of the cone, the point we reach must still 

be on a different side of the hyperplane to z. This implies that the 

hyperplane must be “titled away” from every edge of the cone (the 

columns of A), and that the normal must make an obtuse angle to 

the said column. More formally, 

col 0i
ll ¥

⋅
⋅ < 

y z
y A  

 

 Acute angle with z: Note that since Î0  , 0⋅ >y z  and so y 

must form an acute angle with z. 

We have therefore reached a contradiction. 

o We quickly digress to cover an interesting application of Farkas’ Lemma: 

arbitrage-free pricing. 

 Consider a market with n assets. A portfolio is a vector nÎx   in which 

xi describes the amount of asset i purchased. 

z col 1A

col 2A

y
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 The current price of asset i is vi, and so the current price of portfolio x is 

⋅v x . 

 The future is modeled by m different scenarios, described by a matrix 

m nR ´Î  . In scenario m, asset n yields Rmn. The future payoffs are 

therefore Rx. 

 Definition: An arbitrage opportunity is a portfolio x such that 

0 R⋅ ³<v x x 0  

In other words, the portfolio costs a negative amount to buy right now 

and will always yield nonnegative returns. We say a market is consistent 

if and only if it has no arbitrage opportunity. 

 By Farkas’ Lemma, a market is consistent if and only if there exists a 

vector ³q 0  with R=v q . Suppose there exists such a vector, and 

define 

1
1 (1 )r r= - = +

⋅
q

1 q
p  

p  is then a probability distribution, because ³0p  and 1⋅ =1 p . We 

also have that 

( )col 1

1
i

i
v

r
= ⋅

+
Rp  

In other words, the prices today are the discounted value of the future 

prices under the distribution p . We call p  the risk-neutral distribution. 

 The primal and the dual 

o Definition: Consider the primal problem min ( ) s.t. ( ) , n
r

f £ Î W Ìx g 0 xx  , 

and define 

,

*

( )
inf ( )f fÎ £=

g x 0x
xW  

Assumption: The feasible set is non-empty and the optimal cost is bounded 

below. In other words, *f-¥< <¥ . 

Definition (Lagrangian function): For rÎ W Îx ,m   

( ), ( ) ( )f= + ⋅x x g xm m  

We say *m  is a geometric multiplier  
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 * ³0m  

 * *inf ( , )f LÎW=
x

x m  

o Definition: The set 1r+Ì   of constraint-cost pairs is defined by 

( ){ }( ), ( ) :f= Î Wg x x x  

Given 
0

1( , ) \ {0}rm +Îm  , the hyperplane passing through ( , )wz  is 

{ }0 0
( , ) :w w wm m⋅ + = ⋅ +z z zm m  

The positive/negative halfspace has the = replaced by >/<. The hyperplane is 

non-vertical if 
0

0m ¹ . In such a case, it can be normalized such that 
0

1m = . 

o Lemma (visualization): 

 The hyperplane with normal ( ,1)m that passes through ( )( ), ( )fg x x  

intercepts the vertical axis { }1(0, :) r xw +Î Î   at the level ( , )L x m . 

 

In other words, the simple interpretation of ( , )L x m  is the point at which 

a given hyperplane crosses the vertical axis.  

 Amongst all hyperplanes with normal ( ,1)m  that contain   in the 

positive halfspace, the highest interception of the vertical axis is attained 

at inf ( , )LÎWx
x m . 

( )g x

( )f x


( )( ), ( )g fx x

( )0, ( ,L x m

m
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 *m  is a geometric multiplier if and only if * ³0m  and, among all 

hyperplanes with normal *( ,1)m  that contain   in the positive halfspace, 

the highest interception of the vertical axis is attained at *f  (in other 

words * *inf ( , )L fÎW =
x

x m ). 

 

Here is an example of a problem in which a geometric multiplier does not 

exist: 

 

In this case, there is no hyperplane that contains the whole of   in one of 

its halfspaces that also passes through the point *(0, )f . Thus, there is no 

m  for which *inf ( , )L fÎW =
x

x m  because, as we saw in part (2), 

( )g x

( )f x

*(0, )f

( )g x

( )f x


m

( )*0, f

( )g x

( )f x


m

( )0, inf ( , )LÎWx
x m
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inf ( , )LÎWx
x m  considers the highest intercept for planes that contain the 

whole of   in one of their halfpsaces. 

Proof: 

1. The hyperplane is the set ( , )wz  satisfying 

( ) ( )w f⋅ + = ⋅ +z g x xm m  

Clearly, if z = 0, we must have ( , )w L= x m . 

2. The hyperplane with normal ( ,1)m  that intercepts the axis at level c is 

the set ( , )wz  with 

w c⋅ + =zm  

If   lies in the positive halfspace, then 

( , ) ( ) ( )L f c³ " Î W= ⋅ +x g x x xm m  

Thus, the maximum intercept is inf ( , )LÎWx
x m . 

3. We need to show that * *inf ( , )f LÎW=
x

x m . It is obvious from part (2) 

that this is true if and only if among all hyperplanes with normal *( ,1)m , 

the highest interception with the vertical axis is at f*. 

o Theorem: Let *m  be a geometric multiplier. Then *x  is a global minimum if 

and only if *x  is feasible and 

** * *argmin ( , ) ( ) 0 1
j j

L j rÎWÎ = " £ £
x

x g xx m m  

Geometrically, the first statement is that x* is, indeed, the value of x that 

minimizes L at that value of m  (and recall that * *inf ( , )f LÎW=
x

x m ), and the 

second is that either x* is on the boundary of the feasible set (in which case we 

can “improve no further”) or that the geometric multiplier is horizontal (in which 

case the minimum is attained on the interior of the feasible set). 

      ( )g x

( )f x


m

( )g x

( )f x



m
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Proof: Assume *x  is a global minimum. Then 

* * * * * ** * *( ) ( ) ( , )( ) inf ( , )f L Lf ff ÎW³ += ⋅ = ³ =
x

x g x xx xm m m  

Since the two ends are equal, we have equality the whole way through, and 

* * *( , ) inf ( , )ÎW=
x

x xm m   

Similarly, we have * * ** ( ) (( ))f f³ + ⋅x x g xm . Thus, since * ³0m , we must have 

* *( ) 0
j j

=g xm  

Conversely, if * * *( , ) inf ( , )ÎW=
x

x xm m   and * *( )⋅g xm : 

* * * * * * * *( ) ( ) ( ) ( , ) min ( , )f f L L fÎW= + ⋅ = = =
x

x x g x x xm m m  

o We define the dual function ( ) in ( , )fq ÎW=
x

xm m ; it is concave over its domain, 

which is convex [because q is a point-wise minimum of concave – actually linear – 

functions]. Geometrically, q simply does the following: 

 Take a hyperplane with normal ( ,1)m  

 Push it up as far as possible until it hits the set  . 

 Find the value at which it intercepts the f(x) axis. By the second part of 

the visualization lemma, this is ( )q m .  

Diagrammatically: 

 

o We then define the dual problem as 

max ( ) s.t. q ³0m m  

And the dual optimal value is given by * max ( )q q³=
0m m . [It is possible, 

however, that ( )q =-¥m  for all ³0m , in which case the dual problem is 

infeasible and *q =-¥ ]. 
 

( )g x

( )f x


m

( )0, ( )q m
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Geometrically, the dual problem takes all of the snuggly fitting hyperplanes 

defined by different values of m  and finds the one with the highest intercept: 

 

[Parenthetically, recall that we proved above that a convex set can be described 

as the intersection of half-spaces containing it. If this is true, then the dual 

problem can – in some sense – be seen as “exploring” this set via its halfspaces 

rather than directly]. 

o We now consider a number of examples to illustrate the concepts above 

 Consider the program 

2 1 2 1 2
min ( )  s.t. ( ) 1 0f x x g x x

+Î
= - = + £-

x
x x


 

It turns out the solution to this problem is * *1, (0,1)f =- =x . 
 

Now, the Lagrangian is given by 

1 2 1 2
( , ) ( 1)x x x xm m= - + + -x  

with 0m ³ . The dual function is 

2

2 1 2

( ) min

min

( , )

( 1) ( 1)x

q

x

m m

m m m
+

+

Î

Î
= + -

=

+ -
x

x

x





 

Clearly, this is only bounded if both the coefficients of x1 and x2 are 

positive. This means we need 1m ³ . Thus 

1

1
( )q

m
m

m m

ìï-¥ <ï= í- ³ïïî
 

Maximising this function, we clearly find ** *11 q fm  =- == . Thus, 

there is no duality gap. 

 Consider the program 

( )g x

( )f x


*q
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{ }2
1 2 2( , 1: 2 1) 0

min ( )  s.t. ( 0)
x x x

f x x g x
Î Î ³

= + £=
x

x x


 

It turns out the solution to this problem is * *0, (0, 0)f = =x . 
 

Now, the Lagrangian is given by *
1 2 1

( , ) x x xm m= + +x , with 0m ³ . If 

| | 1m £ , the first term will dominate over the last term, and x1 = 0 will 

be the bounded solution. If, on the other hand, m  falls outside this range, 

the last term dominate, and the Lagrangian can be shrunk ad infinitum, 

Thus 

| | 1
( )

0 | | 1
q

m
m

m £

ìï-¥ >ï= íïïî
 

The optimal solution is clearly [0,1]m Î  (since 0m ³ ), with * *0q f= = . 

So once again, no duality gap. Notice that primal degeneracy leads to 

dual non-uniqueness; see linear programming notes for more on this. 

 Consider the program 

2min ( )  s.t. ( ) 0
x

f x x g x xÎ = = £  

It turns out the solution to this problem is * 0, 0f x= = . 
 

The Lagrangian is 2( , )x x xm m= +  with 0m ³  and 

1
4( )

0

0
q m

m
m

m

ìï- >ï= íï- £¥ïî
 

In this case, * 0q = , so there is no duality gap, but there is also no 

optimal dual solution; it is attained as m  ¥ . 

 Consider the program 

{0, }
1

1 2
min ( )  s. 0t. ( )f x x g x xÎ = - = - £

x
 

By inspection, the solution is * *0, 0f x= = . 
 

The Lagrangian is 1
2

( , ) ( 1)x xm m m= - -  with 0m ³  and 

{ }
1
2

2 21
2

( ) min , 1
1 1

1
q m mm m
m

m m

ìï -ï= = - -íï
³

- <ïî
 

And so the solution of the dual problem is * 1
2

q =- . There is a duality 

gap. 
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 Weak duality 

o Theorem (Weak Duality): **q f£  
 

Geometrically, this is an obvious statement. Whatever the shape of the set  , 

the “snug hyperplane” with the highest cutting point will be lower than, or at 

the same place as *f : 

 

Proof: Consider feasible x  and m ; in other words, ³0m , Î Wx  and ( )£g x 0 . 

( )( ) inf ( , ) ( ) ( )
z

q L f fÎW £= + £x g x xxm m m  

Thus 

*
, ( )

* sup ( f ( )) in f fq q³ ÎW ££ ==
0 x g x 0

xm m  

o Definition (Duality gap): If * *q f= , we say there is no duality gap. If * *q f<  

then there is a duality gap. 

o Theorem: If there is no duality gap, the set of geometric multipliers is equal to 

the set of dual optimal solutions. If there is a duality gap, the set of geometric 

multipliers is empty. 

Proof: By definition, * ³0m  is a geometric multiplier if and only if 

** **( , )inf ( )f qqÎW= = £
x

x mm . By weak duality, this holds if and only if there 

is no duality gap. 

o Note also that if the primal problem is unbounded, *f =-¥ . By weak duality, 

this means that ( )  q =-¥ " ³0m m , and so the dual problem is infeasible. 

Similarly, if the dual problem is feasible, the primal problem is bounded. 

However, if the primal is infeasible, we can say nothing about the dual. 

 Primal & Dual Optimality Conditions 

( )g x

( )f x



*q

*f
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o Theorem (optimality conditions): * *( , )x m  is an optimal solution/geometric 

multiplier pair to the problem min ( ) s.t ( )fÎW £
x

x g x 0  if and only if 

1. PRIMAL FEASIBILITY: Î Wx  and ( )£g x 0  

2. DUAL FEASIBILITY: * ³0m  

3. LAGRANGIAN OPTIMALITY: ** argmin ( , )ÎWÎ
x

xx m  

4. COMPLEMENTARY SLACKNESS: * * *( 0  1)
j j

j rgm = " £ £x  

Note that this theorem is only useful if there is no duality gap. 

Proof: Clearly, if * *( , )x m  is an optimal solution/geometric multiplier pair, 1 and 

2 must hold. 3 and 4 hold by earlier theorems. 
 

Conversely, if 1-4 hold, then 

by (4) by (3)
* * * ** * *( ) ( , ) min ( , ) ( )f f q qÎW£ = = = £

x
x x xm m m   

By weak duality, the opposite inequality must hold. Therefore * *f q= , *f  is 

primal optimal and *q  is dual optimal. 

o Theorem (Saddle point): * *( , )x m  is an optimal solution/geometric multiplier 

pair of the problem above if and only if ** ,Î W ³x 0m  and * *( , )x m  is a saddle 

point of the Lagrangian in the sense that 

* * * *( , ) ( , ) ( , ) ,£ £ " Î W ³x x x x 0m m m m    

Again, this theorem is only useful if there is no duality gap. 

Proof: Two parts: 

 Optimal Saddle  If * *( , )x m  is an optimal solution/geometric multiplier 

pair, then from optimality condition (3), we have 

* * *( , ) ( , )£ " Î Wx x xm m   

Furthermore, since ( )£g x 0 , for any ³0m  we must have 

* * *( , ) ( ) ( , )f£ =x x xm m  . 

 OS pad t ldle ima  If ** ,Î W ³x 0m  and * *( , )x m  is a saddle point, then 

{ }
* *

* * *
( ) if ( )

( , ) sup ( ( )
otherwi

su
se

p
f

f³ ³

ìï £ïï= + = íï+¥ïïî
0 0

x g x 0
x x g xm mm m  

We show that each optimality condition holds: 
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 Condition 1: By the definition of a saddle point, 

* * *( , ) ( , )£x xm m  . Therefore, the first of the two options for 

*s (up , )³0
xm m  options must be correct, and *( )£g x 0 . 

 Condition 2: The statement of the theorem says that * ³0m . 

 Condition 3: Obvious, by the definition of a saddle point. 

 Condition 4: We have established that the first option for 

*s (up , )³0
xm m  above is correct. Thus, * * *( , ) ( )f=x xm  and this 

means that ** ( ) 0=g xm  . But since * ³0m  and *( )£g x 0 , we 

get * *( ) 0
j j
gm =x . 

 Extension to equality constraints 

o The theory above can be extended to equality constraints by simply introducing 

a pair of inequality constraints for each equality constraints. Thus, ( ) =h x 0  

becomes ( )³h x 0  and ( )£h x 0 . 

o It turns out this is equivalent to simply eliminating the non-negativity 

constraints on the Lagrange multipliers for equality constraints. See the 

discussion of the geometrical interpretation of the KTT conditions for some 

intuition behind this result. 

 Strong Duality 

o Theorem (Linear Constraints): Consider the following problem: 

(P) : min ( ) s.t. , nf A £ Î
x

x x b x   

The Lagrangian is ( ), ( ) ( )f A= + -x x x bm m  and ( ) i ( , )nf nq
Î

=
x

x mm

  and 

the dual is 

max ( ) s.t. 0, mq ³ Îm m m m   

If f is convex over n  and continuously differentiable, then if the primal has an 

optimal solution, then there is no duality gap, and at least one geometric 

multiplier exists. 

Proof: Let *x  be an optimal solution for the primal. Then, by the KKT 

conditions, there exists * mÎm   such that 

** * *( ) 0 ( )A f A³ - =  + =0 x b x 0m mm   
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(We do not need to check for regularity, since the constraints are linear). 
 

Now, since ( , )x m  is convex and * *( )f A + =x 0m , we have that 

** argmin ( , )nÎ
Î

x
xx m


  

As such 

{ }* * *( ) min ( ) ( ) ( )nf f A q
Î

= + - =
x

x x x bm m


  

By weak duality, however, we have that 

* * **( )) (q fq f£ £ £ xm  

However, by the previous statement, * *( ) ( )f q=x m , equality holds throughout, 

and so * *f q= . 

o Extension to equality constraints: The above trivially extends to linear 

equality constraints. More generally, consider the problem 

min ( ) s.t. , ( )n f A
Î

£=
x

x x b g x 0


 

With Lagrangian 

( , , ) ( ) ( ) ( )f A= + - +x x x b g xl m l m   

(With ³0m  and l  unrestricted). 
 

Then, provided that 

 There exists an optimal solution *x  

 f and g are continuously differentiable 

 There exists multipliers * *( , )l m  satisfying the KKT conditions (ie: some 

sort of regularity). 

 f and g are convex over n  

Then there is no duality gap and geometric multipliers exists. 
 

(Note that we are effectively requiring inequality constraints to be convex and 

equality constraints the be linear. One way to look at this requirement is as a 

requirement that   be convex. Indeed, since m  is positive, ( )g xm  is convex for 

all g. Since l  can take any value, however, it needs to multiply a linear function 

to retain convexity). 

o Theorem (Slater’s Condition): Consider the problem  
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min ( ) s.t ( ) ,f £ Î W
x

x x 0g x  

Then, suppose that 

 The problem is bounded, in other words 

*
, ( )

inf ( )f fÎW £-¥< =
g x 0x

x  

 The set W  is convex, and f and g are convex over W . 

 There exists a vector x  with ( )<g x 0  

Then there is no duality gap, and there exists at least one geometric multiplier. 

Proof: Define 

{ }1( , )  with ( ,: ) ( )rw f w+= Î $ Î W £ £z x g x z x  

By the convexity of g, f and W , this set is convex. 
 

Note also that ( )*0, f  is not in the interior of  . Otherwise, for some 0e > , 

( )*0, f e- Î  , which contradicts the definition of *f . 

 

By the supporting hyperplane theorem, there exists a normal vector 

( , ) ( , 0)b ¹ 0m  such that 

* ( , )w wf bb £ + ⋅ " Îz zm   

Now, consider; if ( , )w Îz  , then ( , )w g+ Îz  , for all 0g ³ . Thus, 0b ³ . 

Similarly, ³0m . 
 

Consider, however, that if 0b = , the equation above becomes 

0  ( , )w£ ⋅ " Îz zm   

But since ( )( ), ( )f Îg x x  , this would mean that 

0 ( )  ( , )w£ ⋅ " Îg x zm   

Since, by definition, ( )<g x 0 , this means that = 0m . This is a contradiction, 

which means that we must have 0b > . 
 

We can therefore divide by b  and normalize, so that 1b = ; we then get 

*

*  ( , )

( ) ( )

w w

f f

f £ + ⋅ " Î

 £ + ⋅ " Î W

z z

x g x x

m
m


 

Minimizing over Î Wx , we get 
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* *inf ( ) ( ) ( )f f q qÎW
é ù£ + ⋅ = £ê úë ûx

x g xm m  

Thus, by weak duality, * *f q=  and m  is a geometric multiplier. 

 

Diagrammatically, if the set ( ){ }( ), ( ) :f= Î Wg x x x  and the function f(x) look 

like this: 

           

Then the set { }1( , )  with ( ,: ) ( )rw f w+= Î $ Î W £ £z x g x z x  looks like 

 

The line must be sloping as above (ie: m  and b  must be positive). Now, 

consider – if there is a point x  such that ( ) 0g <x , it means gmin < 0. Therefore, 

we can’t have 0b =  (ie: the line can’t be vertical). Now, the Lagrangian is 

basically the projection of any point in this set onto the vector ( ,1)m  – which is 

clearly minimized at *f . 

o Note that the requirement that there be a ( )<g x 0  is crucial. In particular, this 

condition is not satisfied for problems involving equality constraints. These are 

harder to deal with and require a new definition 

z

w

min
g

*(0, )f
( , )bm

x

( )f x

W

( )g x

( )f x



min
g
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o Definition (Relative interior): Suppose nÌ   is a convex set. The relative 

interior of   is the set relint   of all nÎx   for which there exists an 0e >  

such that if aff Îz   with e- <z x , then Îz  . 

 

For example, consider the set 2[0,1]= Î  . This set has no interior, because 

there is no 2  ball lying totally in the set. However, it has a relative interior: 

 

o Theorem (Slater’s Conditions with Mixed Constraints): Consider the 

program (E is a matrix) 

min ( ) s.t. ( ) , ,f A EÎW £ £ =
x

x g 0 x b xx d  

Suppose that the optimal value *f  is finite and that 

 W  is the intersection of a convex set   and a polyhedron 

 The functions f and g are convex over W  

 There is a feasible vector x  with ( )<g x 0  

 There is a vector x  with A £x b , E =x d , relint Îx   and Î Wx  

Then there is no duality gap, and there exists at least one Lagrange multiplier. 

relint 

0
1

Ï 


