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STOCHASTIC PROCESSES II 

PART I – MARTINGALES 

Conditional expectations 

 Measure theory 

o In a probability space ( , , )W  , a sigma field   is a collection of events, each of 

which as a subset of W . It satisfies (i) Æ Î   (ii) cA AÎ  Î   (iii) 

1ii i
A A¥

=Î  È Î  . Notes: 

 (i) and (ii)  W Î   

 ( )1 1

c
c

i ii i
A A

¥ ¥

= =
=  , so also closed under infinite (and finite) intersection. 

o A random variable maps ( ) :X w W   . When we say X is measurable with 

respect to   and write X Î  , we mean { }  : ( ) xX xw w £ Î " . 

 Conditional expectations 

o ( | )X Y  is a random variable. ( )( | )( ) | ( )X Y X Y Yw w= =  . In other words, 

the fact ( )Y Y w=  “reveals” a “region” of W  in which we are located. We then 

find the expected value of X given we are in that “region”. 

 In terms of the definition below, we can write ( | ) ( | ( ))X Y X Ys=  , 

where ( )Ys  is the sigma-field generated by Y – in other words, 

{ }{ }( ) : ( ) :Y Y xxs w w £= Î   – every event can would be revealed by 

Y. 

o ( | )W X=    is a random variable. ( | )( )X w   is a bit harder to understand – 

effectively, it takes the expectation of X over the smallest   that contains w . In 

other words, let A be the smallest element of   that contains w  – then we 

restrict ourselves to some region of W  and find the expectation over that region; 

( | )( ) ( )
A

X Xw =   . Formal properties: 
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 W Î  : information as to where we are in W  only ever “reaches” us via 

knowledge of which part of   we’re in, so this is obvious. 

 ( ) ( )A A
W X=     for all A Î  : we are now restricting ourselves to a 

region of W  that is  -measurable. Provided A is the smallest element for 

which Aw Î , )( ()
A

XW w =   , and the result follows trivially. (If it is 

not the smallest element, the result requires additional thought). 

o Some properties 

i. |Xé ùê úë û   if X Î   

ii. | ( )X Xé ùé ù =ê úê úë ûë û    

iii. ( ) ( )| |XZ Z X=    if Z Î   

iv. Tower: ( ) ( )| | |X Xé ù =ê úë û      if Í  : in this case,   is “more 

descriptive” than  , so the result makes sense. 

Proof: Use ( )( )( ) ( )( )| | |
A A

X X=          for A Î  . Then use 

the fact that A Î   to show this is equal to ( )A
X  .  

v. Linearity 

vi. Jensen’s: for convex f, ( )( ) | |f X f Xé ù é ù³ê ú ê úë û ë û    

o Notes 

 | { , }X Xé ù é ù= Æ Wê ú ê úë û ë û   (the RHS is a constant, because whatever w  we 

choose, the only element of { , }Æ W  that contains it will be W ). Thus, (ii) 

is a special case of (iv). 

 Integrability of X implies integrability of |Xé ùê úë û  : 


( )


( )

(vi) (ii)

( | )   |   X X Xé ùé ù £ =ê úê úë û ë û
       

o Example: Let W  be countable. Let { }1 2
, ,=     be a partition of W , and   

be the set of all subsets of  . Then ( | )X   takes value 
( )

(

( )

)
i

i

X
w

ww
Îå 





 with 

probability ( )
i

  . 
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Proof: Clearly, the RV is   measurable, because each value it can take is 

defined by a 
i
 . Also, ( | )

A
Xé ùê úë û    is the expected value over those 

i
AÍ . 

Clearly, =
A

Xé ùê úë û  .   

Martingales 

 Definition: { }n
X  is a sub-martingale with respect to { }n

  (where 
1n n+Î  ) if 

i. 
nn

X Î   

ii. ( )
n

X <¥  [it is often convenient to work with the stronger condition 

n
X <¥ ]. 

iii. 
1
|

n n n
X X+
é ù ³ê úë û   [< gives a super-martingale, = gives a martingale]. Implies the 

weaker property 
1n n

X X+
é ù é ù³ê ú ê úë û ë û   

 Remarks: 

o A convex function of a martingale is a submartingale. 

o An increasing convex function of a submartingale is a submartingale. 

Proof: (i) and (ii) are simple. ( )1 1
( ) | [ | ( )]

n n n n n
f X f X f X+ +
é ù ³ ³ê úë û   .  

 Example: Let 
1

n

n ii
S X

=
= å , where the Xi are IID with ( ) 0,

i i
X X= <¥   

o Sn is a martingale [
1n

S n X£  ] (the mean martingale). 

o If 2ar( )
i

X s= <¥ , 2 2
n

X ns-  is a martingale (the variance martingale).  

 Example (the exponential martingale): Let 1( ) ( )Xeqj q =  . / ( )nS

n
nM eq j q=  is a 

martingale. For example, if 
1

n

n ii
S X

=
= å  is an asymmetric random walk with 

( 1) 1 ( 1)
i i

p X X= = = - =-  , then ( )1 nS
p

n p
M -=  is an exponential martingale, with 

1 p

p
eq -=  and ( ) 1j q = .  

 Example: Suppose an urn starts with one black and one white ball. We pull out balls 

from the urn, and return them to the urn with another, new ball of the same color. Yn, 

the proportion of white balls after n draws, is a martingale (mean ½).  

 Example: Let { }n
X  be a Markov Chain with transition matrix P(x, y) and let h(x) be a 

bounded function with ( ) ( , ) ( )
y

h x p x y h y=å . { }( )
n

h X  is then a martingale.  
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Modes of convergence, etc… 

 Modes of convergence 

o Almost sure: ( )lim ( ) ( ) 1
n n
X Xw w= = , or ( )i.o. 0

n
X X =  

o In probability: ( )lim 0 0
n n

X X e e¥ - ³ = " >  

 Can extract a subsequence { }
kn

X  that tends to X almost surely. Chose 

( )
1

1 1

2k
kn k

X X
+
- ³ £ . 

o L1: lim 0
n n

X X¥ - =  (assuming 
1n

X LÎ ) 

 Implies lim
n n

X X¥ =  , since ( ) nn
X XX X £ --  (derive by 

writing a a b b= - +  and using triangle inequality). 

 Implies ( ) ( )lim
nn

X X¥ =  , since ( )
n n

X X X X- £ -  , by Jensen. 

 Implies 
n p

X X  by Markov’s. 

 Interchange arguments 

o Concerned with whether  a.s m ) ( ). li (
n nn

X X X X¥ =   . 

o Holds if 

 Bounded convergence: 
n

X c£ , c is constant. 

Proof: Define { }c
n n n

B A X X e= = - < . Write ( )
n

X X-  as an 

integral and split over An and Bn. Use the fact that ( ) 0
n

B  . [Can 

replace with convergence in probability; 
n

X c£  still holds for 

subsequence].  

 Monotone Convergence: 0
n

X X£   almost surely 

Proof: ( ) ( ) lim sup ( ) ( )
nn n n

X X XX X X£  £  £    . Together 

with Fatou, gives our result.  

 Dominated convergence: 
n

X Y£ , Y integrable. 

Proof: Condition implies 0
n

Y X ³ . Apply Fatou to both, subtract 

( )Y <¥  from both sides.  

o Fatou: If Xn > 0, ( )lim inf lim inf ( )
n n n n
X X£   
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Proof: Let inf
m n m n

Y X>= , and note that inf ( ) ( )
n m n m

X Y> ³  . Replace Ym 

with min[ , ]
m

Y k  – bounded because Xn’s positive. Use bounded convergence and 

let k  ¥ .  

 Uniform integrability 

o Definition: { }n
X  is uniformly integrable if 

0 0

0

0,  s.t.   

l sup

,

im
n

n

n X a

n X a

a n
X

a X n a ae e

>

>

¥
é ù =ê úë û

é ù " > $ £ " ³ê úë û

 

 
 

o Lemma: { } su u.i. p
n n n

X X K £  

Proof: Write ( ) ( )
n n

n nXn a X a
X X aX e

£ >
+= £ +     .  

o Lemma: { }sup  u.i.
n n n

X Xé ù < ¥ ê úë û  

Proof: Let sup
n n

Y X= . [ ] [ ] [ ]
Y a Y a

Y Y Y£ ³= +     . By monotone 

convergence, first term approaches ( )Y , second gets arbitrary close to 0, and 

n
X Y£ , so u.i. follows.  

o Lemma: { }1
0 s.t.   u.i.

n n
X K X

d
d

+
$ > £ <¥   

Proof: ( ) 11n

n n n

X

n n nX a a X a X a

K
X X X

a a

d d

d d

+

> > >

æ ö æ öé ù ÷ç ÷÷ ç£ = £ç ê ú ÷÷ ç ÷ç è ø÷ç ë ûè ø
      . By splitting 

into intervals 1
n

X £  and 1
n

X > , can also show that for any 0 dd ¢< £ , also 

integrable.  

o Theorem: { }
1

 u.i. & 
n n n Lp

X XX X X    

Proof: First, show X is integrable by writing lim inf
n n

X Xé ù é ù=ê ú ê úë û ë û  , using 

Fatou’s, writing lim inf < sup and using the definition of u.i [use subsequences 

for convergence in p]. Then, set 
n n n

Y X X X X- £= +  – it is u.i. because X 

integrable. Split )(
n

Y  into 
n

Y a>  and 
n

Y a£ . First one can be made 

arbitrarily small by u.i. Bounded convergence applies to the second one, and 

since 0
n

Y  , it can also be made arbitrarily small by letting n ¥ .  

o Theorem: { } u.i. & 
n nn p

X XX XX  <¥    
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Proof: Define ( )
a
f x  as a function that links (0, 0), (a – 1, a – 1) and (a, 0). 

Clearly 
1

( )
x a a x a

f xx x£ - ££ £  . Write ( )
n n

n n nX a X a
X X X

> £

é ù= - ê úë û
      

( )
n a n

X f Xé ù£ - ê úë û  . By L1 convergence (first term) and monotone convergence 

(second term), this can be made arbitrarily close to 
a

X f Xé ù- ê úë û 

1X a
X X

£ -

é ù£ - ê úë û
   . We can make this arbitrarily small since X <¥ .  

o It can also be shown that { } u.i.
n

X  if and only if ( )
n A

A Xd eé ù<  <ê úë û    and 

sup
nn

X <¥ . For the only if part, split 
n A

Xé ù
ê úë û   into 

n
X a>  and 

n
X a£ . 

For the if part, use Markov’s Inequality ( )1
sup 0

n n
X a³ >  , and then use the 

assumption. 

 Summary 

(Note: when arrows enter a given bubble at the same point, both are required for the 

bubble to hold. When arrows enter at different points, each arrow independently is 

sufficient to prove the bubble. The result pertaining to the convergence of martingales 

(in dotted lines) will be discussed later.) 
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Optional stopping 

 Definition (stopping time): If T is an integer valued random variable, we say it is a 

stopping time with respect to a filtration 
n
  if { } n

T n= Î   for all n (or { } t
T t£ Î   

for all t, in continuous time). 

Remark: If T1 and T2 are stopping times, so are 
1 2 1 2 1 2

, ,T T T T T T+   . 

 Theorem: If { }n
X  is a (sub)martingale and T is a stopping time, { }T n

X   is also a 

(sub)martingale. If { }n
X  is u.i., so it { }T n

X  . 

Proof: Write 
1

0 { } { 1}

n

T Tn kkk nnT
X X X= > -

-

 =
= +å   . Clearly, this is 

n
  measurable, and 

1

0

n

T n k nk
X X X

-

 =
+£å  so it is integrable. Conditioning follows. . .u i : to show u.i., first 

note that { }T n
X+

  is also a submartingale, and so ( )
T n n n

X X X+ +
 £ £   . Taking 

limits, sup ( ) sup
n T n n n

X X+
 £ <¥   [the last inequality follows by u.i. of { }n

X ]. By 

{ } u.i.
n

X

1n L
X X

n
X X <¥ 

( ) ( )
n

X X 

 a.s.
n

X X

n p
X X

n
X Y£0

n
X X£ 

sup
n n

X K£

sup
n n

Xé ù < ¥ê úë û

1

n
X K

d+
£

n
X c£

Y < ¥

These three results 

require Xn p X 

{ } martingale
n

X
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the theorem in the martingale convergence section, 
T n Tn

X X+
 ¥  with 

T
X <¥ . 

Finally, consider 
T nT n X a

X
 >

é ù
ê úë û

  . Simply split it over 
T n£  and 

T n> , drop these 

indicators and use integrability of XT and u.i. of { }n
X .   

 Example: Consider a gambler’s ruin with wealth St at time t with S0 = i and with 

probably ½ of going each direction at each time step. Let 

( )
( )

Probability we hit ,  at which point we stop

1 Probability we hit 0, at which point we're ruined

N i

p

p = >

- =


  

And let 

{ }inf :  or 0
n n

T n S N S= = =  

We can now use the OST 

o On 
t

S  OST says that 
0

( ) ( )
T

S S i= =  . Logic says that ( ) 0
T

S pN= + . 

Together, we obtain /p i N= . 

o 2On 
t

S n-  OST says that 2 2 2
0

( ) ( )
T

S T S i- = =  , and so 2 2( ) ( )
T

T S i= -  . 

Logic says that 2 2( ) 0
T

S pN= + . Together, ( )( )T i N i= - .  

 Counterexample: Consider the example above, but with { }inf :
n

T n S N i¢ = = > . 

This is well defined, in that ( ) 1T ¢ < ¥ =  (because the random walk is an irreducible 

Markov chain, which means every state will eventually be visited) but blindly applying 

the OST gives ( )
T

S i¢ = , which implies that N = i. Clearly, something has gone awry. 

 We need to develop conditions under which the OST works. One such condition is… 

 …Theorem: If 
0

T n£  a.s. then
0

[ ] [ ]
T n

X X=  . 

Proof: 
0 0

[ ] [ ] [ ]
T T n

X X X


= =     

Remark: This condition is not satisfied in the counterexample above because even 

though ( ) 1T ¢ < ¥ = , it is not bounded – following the MC analogy, ( )T ¢ = ¥ . 

 More generally, there are three key “ingredients” to optional stopping 

  (1) (2) (3)

0
[ ]   lim [ ]   [lim ]  [ ]

n T n n T n T
X X X X = = =     

Notes: 

1. This equality holds for every n (since 
T n

X   is also a martingale) and so it still 

holds after we take t he limit. 

2. This equality requires an interchange argument – uniform integrability of { }T n
X 

will achieve this, for example. 
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3. This equality requires the martingale to converge. We will see later that uniform 

integrability of { }T n
X   also implies convergence of this martingale. 

 Example: Let us return to the example above, and justify applying the OST in 

retrospect: 

o In the first case, 
nT

a bS n £  " , and so sup
n nT

S a b £  . As such, { }nT
S   is 

u.i. 

o In the second case, 2 2 2)(
n T

t bS n a T -  £  - , so provided ( )T < ¥ , the 

martingale is u.i. We can see this is true in one of two ways (1) symmetric 

random walk limited to an interval forms an irreducible Markov chain with finite 

state space. (2) ( )
0 0

2 2 2
0 0 0

[ ( )] [ 0] 0 [ ]
T n T n

S T n S S T n -  = - =  =     . 

Taking limits as n ¥  on both sides (
0

2

T n
S

  is bounded, and 
0

T n  is 

monotone increasing) so 2( ) ( )
T

S T=  . Since ST is two-valued and has finite 

expectation, T has finite expectation.  

 Though uniform inetgrability is enough to ensure optional stopping, some weaker 

conditions are sometimes sufficient… 

 Theorem: 
1

|
n n n

X X C+
é ù- £ <¥ê úë û    for n < T and ( )T < ¥  is enough. 

 Example (Wald’s Identity): Let { }iX  be IID with 
i

X <¥  and ( )
i

X m= . Let T 

be a stopping time with ( )T < ¥ . Then 
1

( ) ( ) ( )
T

S T X=   . 

Proof: Consider { }n
S nm- . Applying the OST gives the required result, given that 

( )1
|

n n n n
S S X-- = < ¥  .   

 Example: Consider an asymmetric random walk with ( 1) 1 ( 1)
i i

X p X= = = - =-  , 

and let { }inf :  or 
n

T n S a b= =- . We would like to find ( )
b T

Sp b= = . (1) Try the 

exponential martingale nSr  (where 1 p

p
r -= ). Note that 0 1n TS a b

n T
M r r +

£ = £  ; it is 

therefore bounded, and we can apply the OST to deduce that 0( ) ( )1 Tr r==   . Also, 

( ) (1 )T b a

b b
p pr r r= + - . This allows us to find pb. (2) Now use the mean martingale 

{ }( )
n

S n p q- - . OST gives [ ( )] 0 ( ) ( ) ( )
T T

S T p q S p q T- - =  = -   . Using pb, we 

can work out ( )
T

S  and find ( )T . 

 Note that the OST does not necessarily require ( ) 1T <¥ = . Indeed, 

( )( )
T T T T

X X X<¥ ¥ =¥= +    , and if the stopped martingale is u.i., X¥  must exist. 
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 It is important to remember that when we invoke the martingale convergence theorem so 

say that 
T n Tn

X X ¥ , we are implicitly implying that ( ) 1T < ¥ = . 

Martingale Inequalities 

 Doob’s Inequality/The Maximal Inequality 

o Motivation: Markov’s Inequality states that ( )a X a X> £  . 

o Theorem: If { }n
X  is a submartingale and { }0

max
k n k

A X a£ £= ³ , then 

( ) [ ] [ ]
n A n

A X Xa +£ £     

Proof: Define { } oinf  : r
k

T k X a k n³ ³= . Clearly, it’s a stopping time, and 

since T < n, [ ] [ ]
T n

X X=  . Write both sides of equation by splitting over A and 

cA , and note 
T n

X X=  over Ac. Finally, note ( ) [ ]
T A

aa X£   . Finally, note 

that [ ] [ ]
n n An n

XX X X+ +£  £   .  

o If we let 
0

0S =  and 
1

n

n ni
S X

=
= å  were the Xn are IID with 

2[ ] 0, ar[ ]
n n

X X s= =  , then { }n
S  is a martingale, and { } { }2

n n
K S=  is a 

submartingale. As such, we get Kolmogorov’s Inequality: 

( ) ( )
2 2

2
0 0 2

[ ]
max max n

k n k k n k

S n
S x X x

x x

s
£ £ £ £³ = ³ £ =

   

 Azuma’s Inequality 

o Theorem: ( )3 11 ( ) ( ) ( )x x x xx xj j- - -£ F £-  for all x > 0 (where j  is the normal 

density function). 

Proof: Notice that 
2 /2( ) dy

x
ex y

¥
-µF ò . For the upper bound, multiply the 

integrand by ( )21 y-+ . For the lower bound, multiply the integral by ( )41 3y-- . 

Integrating gives the required result.  

o Motivation: Let 
0

0S =  and 
1n n

XS X= + + , with Xi IID 2,m s <¥ . Define 

nS

n n
Y m= - . We then have, by the Central Limit Theorem 

( ) ( ) ( )2n n
n

Y Z
s s

e e e> » > = F   
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Applying the result above gives an exponential approximation. (It is, by the way, 

summable, so we automatically recover the SLLN). 

o Theorem (Azuma’s Inequality): Let { }n
Z  be a zero-mean martingale with 

bounded MG differences (ie: 
1i i

Z Z ba --- £ £  for 0,a b ³ ). Then 

( )
2

2

2
2 exp

( )nn m

m
Z n

e
e

a b
¥

=

æ ö÷ç ÷ç> £ - ÷ç ÷÷ç +è ø
  

This bound is not as tight as the CLT’s, but it requires less. 

o Example: Sn = number of heads in n flips, where (Heads) p= . 
n n

Z S np= -  is 

a martingale with 
1

1
i i

p Z Z p-- £ - £ - . As such, we can use Azuma’s 

inequality and obtain ( ) ( )22 exp 2nS

nn m
p me e

¥

=
- > £ - .  

o Definition (Doob Martingale): Let X be a random variable in L1 and 
n
  be 

a set of filtrations. Then ( )|
nn

X X=    is a martingale. 

Proof: ( ) ( ) ( )1 1
| | | |

n n m n n n
X X X X+ +

é ù = =ê= úë û       .  

o Let 
1

( , , )
n

X X=X  , where the Xi are independent and with CDF Fi. Define 

1
( , , )

i i
X Xs=  . Finally, let : nh    such that, if x differs from y in only 

one component, ( ) ( )h h- £x y  , for some 0³ . Then ( ) |
ii

hS é ùê úë û= X   is a 

Doob martingale. Provided we can prove 
1i i

S S -- £  , we can apply Azuma’s 

Inequality with a b+ =   to ( )
n

S h= X  

( )
2

2
( ) ( ) 2 exp

2

n
h h n

e
e

æ ö÷çé ù ÷- > £ -ç ÷ê ú çë û ÷÷çè ø
X X


   

Proof: To prove 
1i i

S S -- £  , note that 

( )
( )

1

1 1 1 1 1

1 1 1 1

, ,

(

, , , d ( )

) | , , , , , d ( ) d ( )

d ( )d ( )
i

ni

n
i i n n n i ix xi i

i i n n nx i iix i i

S

S h X x x F x

h h X X x x

F xx F

F x

x

F x
+

+

+ +

+

+

+

-

é ù =ê û= úë

= òò
ò òX    

  

 
 

As such, remembering that densities integrate to 1 

1
     d

1 d

i i
S S - £

£

-

=

ò ò
ò ò
 

  


 

As required.  
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o Example: Consider a system of n components (indexed by i) and m experiments 

(indexed by j). Let Xi = 1 if component i works (probability pi) and 0 otherwise. 

For experiment j to work, all the components in the set Aj must work, and we 

assume each component is involved in at most 3 experiments. Let Y be the 

number of experiments that can be performed. We then have 

{ }Experiment  can be performe1 1d
( )()

j
j A

m m

ij j i
Y h Y p

Î= =
= = =å å X   

Since ( ( 3) )h h £-X Y , we can apply Azuma’s.  

 The Upcrossing Inequality 

o Definition: A process { }n
C  is predictable with respect to { }n

  if 
1n n

C -£   for 

all n > 1. This is stronger than measurability; it requires Cn to be predictable 

from the previous step’s information. 

o Definition (Martingale Transformation): Let { }n
X  be a submartingale 

and { }n
C  be a predictable sequence. We write 

( ) ( ) ( )11 0
0

n

k k kkn
C X C X X C X-=

= - =å   

Intuition: Xn may be the state of a market and Cn the action we take at each 

step. The theorem states that provided we can’t see the future (predictability) 

and bet infinite amount (boundedness), the game stays fair (martingale). 

Proof: Measurability is obvious, and integrability follows from the boundedness 

of Cn. Then ( ) ( )1 1 1
| |

n n n n n n n
Y Y C X X+ + +

é ù= + -ê úë û   . Using predictability and 

the submartingale property leads to the result. [Note: the result also applies to 

supermartingales and martingales. For the latter, predictability is not required, 

since the expectation is 0 anyway.]  

o Example: We can write { }n
Xt  as a martingale transformation with 

{ } { } 11
1

nT n T nn
C -³ £ -

= - Î=    . Similarly, we can write { }n T n
X X -  as a 

transformation with 1
n n

C C= - .  

o The upcrossing inequality is concerned with transitions of the martingale from a 

or below to b or above. We define T0 = 0 and 
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{ }
{ }

2 1 2 2

2 2 1

inf :

inf :
k k m

k k m

aT m T X

T m T bX
- -

-

= >

=

£

³>
 

Odd stopping times mark the first time the martingale downcrosses a since its 

last upcrossing of b. Even stopping times are the other way round. These are 

clearly stopping times. 

o Consider a gambling strategy that sets 1
m

C =  if 
2 1 2k k

TT m- < £  and Cm = 0 

otherwise. We effectively “buy” only if we’re below a and sell otherwise. Every 

time there is an upcrossing, a profit of at least b – a is realized. 

o Theorem: Let { }2
sup :

n k
U k T n= £  – this is the number of upcrossings up to 

time n – and assume Xn is a submartingale. Then 

0
( )( ) ( )

n n
U X a Xb aa + +é ù é ùé ù £ - - -ê ú ê ú ê úë û ë û- ë û    

(This inequality would also apply for a martingale). 

Remark: This is hardly very encouraging. The RHS is the amount that would 

have been earned by buying at the start and getting out at n. 

Proof: WLOG, shift the upcrossing range to [0, ]b a- , and define ( )
n n

Y X a += -  

– this is also a submartingale and has the same number of upcrossings. Define Cm 

as above, and since we earn at least b – a at every upcrossing, 

( ) ( )) [ )( ] [( ]
nn n n

b a U C Y b a U C Y£  -- £   . Letting 1
n n

C C= - , we get 

1 01
( ) ( ) ( )

n

n n k k nk
C Y C Y Y Y Y Y-=

+ = - = -å  . Since ( )
n

C Y  is also a 

martingale, 
0

( ) ( ) 0
n

C Y C Yé ù é ù³ =ê ú ê úë û ë û   . Thus, 
0

[( ) ] [ ]
n n

C Y Y Y£ -  .  

Martingale Convergence 

 Theorem: If { }n
X  is a submartingale and sup

nn
X <¥  (this is a weaker condition 

than u.i.), then  a.s.
n

X X  and X <¥ . 

Remark: sup
nn

X <¥  is equivalent to (sup )
nn

X+ <¥  because 2x x x x++ £ = - , 

and so, for example,
0

2 [ ] [ ] 2 [ ] [ ]
n n n n

X X X X X+ += - £ -     . 

Proof: Note that ( )
n n

X a X a+ +- £ +  and write the upcrossing inequality as

( )nX a

n b a
U K

+ +

-
é ù £ = <¥ê úë û

  [using the fact |X| dominates X+ and the condition in the 
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theorem). However, Un is increasing by definition and therefore tends to some U 

(possibly ¥), but by monotone convergence, ( ) ( )
n

U U <¥  . Thus, the number of 

up-crossings must be finite, and so (lim inf lim sup ) 0
n n

X a b X< < < = . This is true 

for any a and b, and so (lim inf lim sup ) 1
n n

X X= = . Integrability of the limit follows 

by Fatou.  

 Corollary: If { }n
X  is a supermartingale and Xn > 0, then 

n
X X  and 

0
[ ] [ ]X X£  . 

 Proof: Let 
n n

Y X=-  – this is a submartingale with [ ] 0
n

Y + = . The condition of the 

theorem above (see the remark) is therefore satisfied.  

 Note, however, that almost sure converge does not imply convergence in the means or 

variances, as the next two examples illustrate.. 

 Example: Assume 
0

0X i= > , and 
1 1

| ~ Po( )
n n n

X X X- - . Clearly, this is a martingale, 

and once we hit 0, we stay there. Let { }inf : 0 or 
n n

T bn X X= = ³ . By optional 

stopping, ( ) (1 )
T

X b p= - , where bb ³  and ( 0)
T

Xp ==  . But ( )
T

X i= . As such, 

1 0i
b

p-    as b  ¥ . Thus, 1p  . How do we know stopping time is finite? Note, 

however, that 2 2 2

1 1
[ ] [ ( | )] ( )

n n n n
X X X X i- -= = +    . As such, ar( )

n
X ni= ; the 

variable itself tends to 0, but the variance blows up.  

 Example: Let 
1
~ [0,1]X U , and 

1 1
| ~ [0, ]

n n n
X X U X- - . Let 2n

n n
Y X= . We can write 

1 nn
X UU=   with each U IID U[0,1]. This is a martingale, and, by the SLLN,

1 1
11

log log 2 log log ( o )2 l g
n

n in n i
Y U U

=
= +  <¥+å   a.s. So 0

n
Y  . Note, however, 

that ( )4
3

ar( ) 1
n

n
X = - . Again, the variance blows up.  

 Coupled with uniform integrability, however… 

 …Theorem: When { }n
X  is a martingale, the following are equivalent 

i. { }n
X  is u.i. (and therefore converges almost surely) 

ii. 
1n L

X X  

iii. Xn can be written as a Doob martingale; |
nn

X Xé úû= ùêë  , with X <¥ . 

For submartingales, only (i) and (ii) are equivalent. 

Proof: ( () )i ii  follows from the fact u.i. implies the boundedness condition in the 

convergence theorem. (( ))ii iii : Let X be the L1 limit of { }n
X ; clearly, |

n
Xé ùê úë û   is a 

Doob martingale. To show this is equal to Xn, all we need to show is that 

[ ] [ ]
n A A

X X=     for any 
n

A Î  . Two steps. (1) Use the martingale property to write, 
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for any m > n, [ ] [ [ | ] ] [ [ [ ]]| ]
n A m n A m A n m A

X X X X= = =           . (2) Notice that 

as m ¥, [ ] [ ] 0
m A A m A

X X X Xé ù- £ - ê úë û      , by L1 convergence. Letting 

m ¥ in step 1 therefore gives the required result. ( ) ( )iii i  Note that by Jensen’s, 

[ |]|
n n

X Xé ù£ ê úë û   , and so we can, WLOG, assume X > 0. Want to show that for 

any e , there exists a0 such that 
[ | ]

[ | ]
nn X a

X e>
é ù <ê úë û    . The indicator is 

n
  

measurable, and so this is equivalent to 
[ | ]

[ ]
n aX

X e
>

<   . Integrability of X means that 

for any 0e > , there exists a 0d >  such that for any A with ( )A d< , ( )
A

X e£  . As 

sch, all we need to show is that ] )( ) ( [ |
n

A X a d>= £    . Applying Markov’s, we get 

( ) [ ]/A X a£  . 

 Example (Polya’s Urn): Consider the example of Polya’s Urn, discussed above. Let 

Xn be the proportion of red balls in the urn after draw n. By symmetry, 1
2

( )
n

X = . 

PART II – BROWNIAN MOTION 

Introduction 

 A brownian motion { }( )B t , sometimes denoted { }tB , is a continuous process with 

independent and stationary increments which follow a normal distribution; in particular, 

~ (0, )
t

B N t  

 A useful way to motivate BM is using a random walk S0 = 0, 
1n n

XS X= + + , with 

the Xn IID equally likely to be 1 and –1. Consider, then, a new random walk S(t) which 

moves every t
n

tD =  time units (instead of every 1 time unit), and moves by a quantity 

xD  instead of + 1. We then have 

( )1
2

2

1

( )
( ) 0 ar ( ) ( ) ar( )

( )
n

X

x
S t S t

S t x

n X
t

X

x t

+

Dé ù é ù= = D ⋅ ⋅ =ê ú ê úë û ë û D

= D +

  
 

As 0tD  , this approaches Brownian motion, provided that 2( ) ~x tD D . 

 Distributional Properties 

o For notational convenience, we write ( ) ( )
t t

B x f x= = . 

o Since ( ) ~ (0, )B t N t , its PDF is 
21 1

22
( ) exp( ) ( )x

t t
x

tt t
f x

p
j= - = . 
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o Covariance: Consider s < t. Then 

ov ( ), ( ) ov ( ), ( ) ( ) ( ) 0 ar ( )B s B t B s B t B s B s B s s s té ù é ù é ù= - + = + = = ê ú ê ú ê úë û ë û ë û    

o Joint density: Let 
1 2
t t< . Then 

1 2 1

1 1 2 2 1 1 2 1 2 1

1 1 2 1 2 1

1 2 1

( ) , ( ) ( ) , ( ) ( )

( ) ( )

( ) ( )
t t t

B t x B t x B t x B t B t x x

B t x B t t x x

f x f x x-

é ù é ù= = = = - = -ê ú ê úë û ë û
é ù é ù= = - = -ê ú ê úë û ë û

= -

 
   

o Conditional density: Let s < t. Then 

( ) ( )
( )

22

2

( )1 1
2 2( )2 2 ( )

1
22

( ) , ( )
( ) | ( )

( ) ( )

( )

exp exp

ex

( )

p

s t s

t
b xx

a t sx t s

b
tt

B s x B
B s x B t b

f

t

x f b x

f b

b

B t b

p p

p

-

-
--

é ù= = =ê ú
é ù= =ê úë û

é ù=ê
ë û

-
=

- -
=

úû

-

ë






 

By multiplying out and then completing the square, we find that 

( ) ( )( )( ) | ( ) ~ , 1s s
t t

B s B t b N b s= -  

The mean is analogous to what we obtained in a Poisson process. The variance is 

less intuitive. 

o Hitting time: Let { }inf : ( )
a

T t B t a= = , a > 0 (the Brownian path is 

symmetric, so the result should be identical for –a). Now consider 

( ) ( ) ( ) ( ) ( )| |
t t a t a

B a B a T t T t B a T t T t³ = ³ £ £ + ³ > >    
( )1

2
T t= £

 

The last line follows from the so-called reflecting principle; once Bt has hit a, it is 

equally likely to be above and below a at a later time, by symmetry. Now 

( ) ( ) ( )2 2 a
a t t

T t B a£ = ³ = F   

Now, as t  ¥ , we would expect this probability to tend to 1, since the 

Brownian motion should eventually hit a. Indeed, ( ) 2 (0) 1
a

T t£  F = . 

However, Brownian motion is a null-recurrent Markov chain – the expected value 

of any hitting time is infinity: 
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2

2 2
/2

/2 /2

0 1 1

1 1 d
( )  d

2 2 2

a
a t a t

a

a a ae t
T e e t

t t tp p p

-¥ ¥ ¥
- -= ³ ³ = ¥ò ò ò  

Note also that if max
t sts

M B£=  (a quantity always increasing in t), we have 

( ) ( ) ( )2 a
t a t

M a T t³ = £ = F   

Similarly, note that 
d

min max ( ) max
t ts s ts s s s
B B B£ £ £= - - = - . 

o Arcsine law: Let X(t) be a Brownian Motion starting at a point other than 0. 

Note that 

( ) ( )
( )
( )

0 0

0

min ( ) 0 | (0) max ( ) 0 | (0)

max ( ) | (0) 0
u t u t

u t

a

X u X a X u X a

X u a X

T t

£ £ £ £

£ £

£ = = ³ =-

= ³ =

= £

 



 

As such 

( )0 1 0
At least one 0 in [ , ] | ( ) ( ) ( )

a
t t X t a P a T t= = = £   

Now, assume we know X(0) = 0, but do not know X(t0). The probability a  of 

there being at least one 0 in [t0, t1]. We can find this by conditioning on the value 

of X(t0), and we get 

( ) 0 0
0 1

1 1

2 2
At least one 0 in ( , ) | (0) 0 1 arcsin arccos

t t
t t X

t tp p
= = - =  

o Consider 

( )0
( ) ,min ( ) 0) (( | ), 0

t u t
X t y XA x uy X x£ £ >= > =  

Note that 

( ) ( )0
( ) | (0) ( , ) ( ) ,min 0 | (0)

t u t
X t y X x A x y X t y X x£ £> = = + > £ =   

Consider the last term; by reflecting at the first time the process hits 0, we find 

that every sample path satisfying that term has a corresponding path that falls 

below 0 and with X(t) < –y (and vice versa). As such 

( ) ( )
( ) ( )
( )

( , ) ( ) | (0) ( ) | (0)

( )

[ , ]

t

t t

t

A x y X t y X x X t y X x

B y x B y x

B y x y x

= > = - <- =

= > - - <- +

= Î - +

 
 


 

o Consider 
0

max
tu tt

M B£ £=  and 
t t t

Y M X= - . Consider  

( ) ( ), 2
t t t

M m B x B m x³ £ = ³ -   
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Because for every path satisfying the first expression, we can reflect at the first 

point Mt hits m. The first path is more than m – x away from m at t, and 

therefore so is the second, but in the opposite direction. 

o Finally, note that Brownian motion is a special case of a Gaussian Process, since 

1
(( ,), )

n
B B tt   can be expressed as a linear combination of IID standard normals: 

1 1 1

2 1 2 1 1 2 1 1 2 1 2

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

B t t Z

B t B t B t B t B t B t t tZ t t Z

= ⋅

= + - = + - = + -


 

o Example: Consider 1( ) ( )
t

X t tB= . The mean and covariance are still as before. 

To show the process is continuous, show that 
0

( )

0
limlim ( ) 0 0B u

u ut
X t  = . 

Express B(u) as ( ) ( 1) ( 1) ( 2)B u B u B u B ué ù é ù- - + - - - +ê ú ê úë û ë û  and use SLLN. 

Therefore, it is a Brownian motion; Brownian motion is self-symetric; all we need 

to do is to consider the interval [0,1]t Î  and we have everything we need about 

the process.  

o Example: Let s < t < u and consider 
s t u

B B Bé ùê úë û . Another way of stating the 

Markov property is that given the present, past and future are independent. Thus 

 ( ) ( ) ( )3| [ | ] [ | ] 0s
s t u t t s t u t tt

B B B B B B B B B Bé ù = = =ê úë û        

o Example (the Brownian Bridge): Let 
1

| 1
t t

X B B= = , with [0,1]t Î . Now, 

using the result about the conditional distribution and for 0 < s < t < 1, 

( )
( )
( )

1

1

1

2
1

| 0

| | 0

| 0

| 0

(1 )

s t s t

t s t

s
t t t

s
tt

X X B B B

B B B B

B B B

B B

s t

é ù é ù= =ê ú ê úë û ë û
é ù= =ê úë û

= =

= =

= -

 
 



 

(Note that ar( ) (1 )
t

X t t= - . Thus, even though this is a Gaussian process, it is 

not Brownian motion). Consider the following argument instead: 

( )
( )

1

2
1

[ | ] | 0

| 0

(1 )

s t s t s

s

X X B B B B

B B

s s

é ù = =ê úë û
= =

= -
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This second argument is incorrect, because in going from the first to the second 

line, we condition Bt on the past while ignoring that we are at the same time 

condition Bt on the future (because we are conditioning on B1 = 0).  

 Martingales Associated with Brownian Motion 

o Recall that in continuous time, the martingale property reads, for all t > s, 

( )( ) | ( )
s

X t X s=  . Defining a stopping time is more tricky; if T satisfies 

{ } t
T t£ Î  , then since   is an increasing family, 

{ } { }1
1 tnn

T tt T
¥

=
= £ -< Î  . However, if T only satisfies { } t

T t< Î  , then 

{ } { }1
tnn

T T tt = < +£ Ï   (again, since the family is increasing). To 

conclude this, we need to assume right-continuity of the filtration. 

o Theorem: The following three processes are martingales: 

 { }tB  (the “mean martingale”) 

 { }2
t

B t-  (the “variance martingale”) 

 ( ){ }21
2

exp
t

B tq q- , where q  is a deterministic parameter (the 

“exponential martingale”). 

Proof: The first two parts are trivial. For the last, recall that ( ) 2(0,1) /2Ne eq q=  

and ( ) ( ) ( ) ( ) ( )2 2 21 1 1
2 2 2( ) [ (0,1)]| |t s st s

B t B t B tB B N t s

s s
e e e e e
q q q q q qq q- - -- -= =    .  

o The exponential martingale can be used to generate many other martingales. Let 

21
2

0
( ; , ) ( , )

!

n
x t

nn
f t x e H t x

n

q q q
q

¥-

=
= = å  

Where Hn is the nth Hermite polynomial, ( )( , ) (0; , )n
n

H t x f t x= . Feeding this into 

the martingale property and exchanging summation and expectation, we can use 

the fact that this holds for any q  including 0q = , and conclude that for each n, 

{ }( , )
n t

H t B  is also a martingale. 

o We can apply the Optional Stopping Theorem to these martingales to get some 

interesting results. 

o Example: Define { }inf :  or 
t

T t B a b= =- . Using the mean martingale, we can 

find / ( )
b

p a a b= + . Using the variance martingale, we can find ( )T ab= .  
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o Example: Let 
t t

X t Bm s= - , with , 0m s > ; this could be seen as the “net 

demand up to time t”, where 
t

Bs  is a production process. We are interested in 

{ }inf : 0
t

T t X b= = >  (the first time stock depletes). ( ) bT
m

=  is easily found 

using the mean martingale on BT. Use the variance martingale for 
2

3
ar( ) bT s

m
=  

o Example: 
t t

X t Bm s= + , { }( )inf ,:
t

T t X a bÏ -= . Use 
2 21 1

2 2

X TT
TB T T

e e
m

s
q q q q

-
- -= . 

Choose 2 /q m s=- , and use the OST (stopped martingale is bounded); 

( ) 1TX
e

q
s = . Directly gives pb and pa. Use OST on ( )/

T T
B X Tm s= -  to find 

( )T . Can let 0m <  and a -¥  and find ( ) 22 /sup b
t t

bX e m s-=³ .  

o Example: Following from the above example and letting { }inf :
t

T t X b= = , 

suppose we want ( )Te g- . Write 21
2T

T B T bg q q b- = - - . 

 Use the OST on 21
2

exp ] exp(( ) )[
T t T t

B T t Bq q q  £-  [bounded.] 

 Substitute 
T

b T Bm s= +  and equate coefficients of T and BT. 

 Ito’s Formula 

o For a deterministic xt, d  d
t

x x t=   and 21
2

d ( ) ( )d ( )(d )
t t t t t

f x f x x f x x¢ ¢¢= + + , 

but 2 2 2(d ) (d )
t

x x t=   which vanishes. In BM, 2(d ) ~ d
t

B t , and so 

1
2

0 0

d ( ) ( ) d ( ) d

1
( ) (0) ( ) d ( ) d

2

t t t t

t t

t s s s

f B f B B f B t

f B f f B B f B s

¢ ¢¢= +

¢ ¢¢= + +ò ò
 

This is Ito’s Formula. The first integral above is called Ito’s Integral and can be 

approximated as 

1 110
 d

i i i

n

t t

t

s s ti
X B BX B

- -=
é ù» -ê úë ûåò  

This is a martingale transformation, and is therefore a martingale under 

boundedness and predictability (  left-continuity) of Xt. Furthermore, as a 

martingale, the mean of the integral is 0. To find its variance, consider 

( )
1 1 1

2 2
2 2

11 10 0
d ( )( ) d

i i i i

t tn n

s s t t t t i i si i
X B X B B X t t X s

- - - -= =

æ ö æ öé ù÷ ÷ç ç» - = - »÷ ÷ç çê ú÷ ÷ç çë ûè ø è øå åò ò     

Where we have used orthogonality of martingale differences, and conditioned on 

1it -
 . This is knows as Ito’s Isometry. More generally, for a bivariate f(t, x) 
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1
2

0 0 0

d ( , )  d  d  d

1
( , ) (0, 0)  d  d  d

2

t t x t xx

T T T

T t x t xx

f t B f t f B f t

f T B f f t f B f t

¢ ¢ ¢¢= + +

¢ ¢ ¢¢= + + +ò ò ò
 

Two results 

 Since the second integral above is a martingale, we have that if ( , )f x t  

satisfies 1
2t x

f f¢ ¢¢= - , then f(t,Bt) is a martingale. 

 We can develop an analogue of integration by parts 

0 0 0
d  d  d

t t t

s t s t s
B s tB sB t tB s B= - = -ò ò ò  

This follows rigorously from Ito’s Formula with f(x,t) = tx. 

o Example: Letting 21
2

( )f x x=  and ( )f x x¢ = , we get 

 ( )2 21 1 1
2 2 20 0

 d  d
t t

t s s s s t
B B B t B B B t= +  = -ò ò   

o Example: Let ( , ) tt Bf t x em s+=  and let ( , ) tt B

t t
Y f t B em s+= = . Taking derivatives, 

we have 2,  ,  
t x xx
f f f f f fm s s¢ ¢ ¢¢= = =  and so 

21
2

d ( , ) d ( )d  d
t t t t

f t B Y t B Ym s sé ù= = + +ê úë û  

We could have obtained the same result using ( ) xf x e=  and ( )
t t

Y f X=  with 

t t
X t Bm s= + .  

o Example: We define integrated Brownian Motion as 
0

 d
t

t s
X B s= ò . This is a 

Gaussian process, and clearly 
0

( ) ( ) d 0
t

t s
X B s= =ò  . Furthermore, using 

integration by parts, we can write 
0 0

d ( ) d
t t

t s s
X B s t s B= = -ò ò , and so, for  

t < u and repeatedly using independent increments 

( )

( )

0 0

0 0

0 0

2

0

0
21

2 3

ov , ov ( ) d , ( ) d

ov ( ) d , ( ) d

( ) d ( ) d

( )( ) (d )

( )( ) d

t u

t u s s

t t

s s

t t

s s

t

s

t

t

X X t s B u s B

t s B u s B

t s B u s B

t s u s B

t s u s s

t u

æ ö÷ç= - - ÷ç ÷çè ø
æ ö÷ç= - - ÷ç ÷çè ø

æ ö÷ç= - - ÷ç ÷çè ø
é ù= - - ê úë û

= - -

= -

ò ò

ò ò

ò ò

ò
ò

 






 

So this is not Brownian Motion.  
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o Example: Consider a more complicated integration by parts 

2 2 2 2 21
20 0 0

 d  d( ) 2  d
t t t

s t s t s s
B s tB s B tB t sB B= - = - -ò ò ò  

Where the last step used Ito’s Formula with 2( )f x x=  to deduce 

2d( ) 2  d d
s s s

B B B s= + .  

o Example: Consider a inventory problem in which the cumulative (net) demand 

up to time t is 
t t

D t Bl s= +  with initial inventory S > 0. When the inventory 

drops to 0, it is instantly replenished to S. Let { }inf :
t

t D St = = . The total 

inventory-time in [0, ]t  is 

0 0

21
2 0

21
2 0

( ) d ( ) d

 d

 d

t t

t

t

S D t S t B t

S B t B

t B

t t

t

t
t

l s

t lt st s

lt s

- = - -

= - - +

= +

ò ò
ò

ò

 

We have used integration by parts and D St = . Taking expectations, and using 

the OST on the uniformly integrable martingale 
0

d
t

s
s Bò , we get 

21
20

( ) d )(
t

S D t
t

l t
æ ö÷ç - =÷ç ÷çè øò   

Assuming the holding-cost per unit time is h and each replenishment costs 

cS K+ , the long-term average cost which we seek to minimize is 

1
2

2

,

( )

( )
min

S

h cS K
l

t

t

l + +


 

From the previous section, we have ( ) S
l

t =  and 
2

2

2 2( ) ( ) ( )s
l

t t t= +   . 

Feeding into the above and minimizing, we find 

 
22

2( )
K hS
h cs K

S l sl
+

= =   

PART III – STATIONARY PROCESSES 

Introduction 

 Definition (Strong Stationarity): The process { }( : 0)X t t ³  is stationary if 
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( ) ( )1 2 1 2
, ( )( ), ( ), ( ), ( ) , (, )

n d n
X t X t X t n X nnX t tt X= + + +   

For all 
1 2 n

tt t< < <  and 0n ³ . In other words, a process is stationary if it is “shift 

invariant”. 

 Definition (Weak Stationarity): The process { }( : 0)X t t ³  is said to be covariance 

stationary if ( )X t mé ù =ê úë û  (ie: it has constant mean) and 

( )ov ( ), ( ) ( ( ) )( ( ) )X t X s X t m X s m R t sé ù é ù= - - = -ê ú ê úë û ë û  , where R is some function of 

t s-  only. 

 Note that a Gaussian process is entirely defined by its mean and covariance; as such, for 

a Gaussian process, stationarity implies covariance stationarity. 

Lp-convergence 

 We define the p-norm of a random variable X as 1/ p

p

pX X
é ù
ê úê úë û

=  . 

 Holder’s Inequality: For p > 1 and 1 1 1
p q
+ = . Then 

p q
XY X Y£ . Applications: 

o p = q = 2 gives the Cauchy-Schwartz Inequality: 
2 2

XY X Y£ . 

o p = s/r and Y = 1 gives Lyapounov’s Inequality 
r s

X X£  for all 0 < r < s. 

o Minkowski’s Inequality: 
p p p

X YX Y £ ++ . 

 Definitions 

o 
p

X LÎ  means that 
p

X <¥ . 

o A sequence is said to be Lp-bounded if sup
n p

X <¥ . 

o 
pn L

X X  means that 0
n p

X X-  . 

o 
pn

X LÎ  and 
pn

LX X X Î , because ( )
n np p

X X X X= - + , and use 

Minkowski to find 
n n np p p p

X X X X Xe£ £ +- + <¥ . 

o Let Lp limit is unique: if 
pn L

X X  and 
pn L

X Y  then use Minkowski’s 

Inequality on ( )n n
X Y X X X Y- = - + - . 

 Theorem: If { }n
X  if a martingale that is Lp bounded with p > 1, then a.s.

n
X X  in 

Lp. The same holds if { }n
X  is a non-negative submartingale. 

 Cauchy Criterion: 0 for , s.t. 0
m np pn

X X n Xm X X-   ¥  $ -  . 
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Theorems 

 Theorem (Weak Ergodic Theorem): If { }n
X  is covariance stationary, then 

2n L
X X , where 1

1

n

n in i
X X

=
= å . Note that in general, X  will be a random variable. 

Under one of two equivalent conditions, it is a deterministic constant equal to 

1
( )X m= : 

o ar( ) 0
n

X   

o ( )1
ov , 0

n
X X   

 Theorem (Strong Ergodic Theorem): If { }n
X  is stationary and 

1n
X LÎ , then 

 a.s.
n

X X  and 
1n L

X X . Again, X  is generally a random variable. Under ergodicity 

(defined below), it is constant. An intermediate step in proving this is… 

Lemma (Maximal Ergodic Lemma): Let { }n
Y  be stationary and let 

1,i n i i n
Y YS + -= + +  and { }, ,1 ,

max 0, , ,
i n i i n

M S S=  . Then { }0,
0 0

[ ] 0 1
nM

Y Y n
>

³ " ³  . 

 Definition (Shift Operator): j  is a shift operation. If 
1 2

( , ),x x x=   then 

2 3
( ) ( , , )x x xj =  . We say the set A is shift invariant if ( )x A x AjÎ  Î . For example, 

the following two sets are shift invariant (we can replace < by > and =, and lim sup by 

lim inf) 

{ }1

1
: lim nx

n

x

n
aA x

+

¥

+= £
  { }1

2
: lim sup nx

n n

x
A x a

+



+

¥= £
 

 Definition (Ergodicity): ( )1
, , ,

n
X X X=    is ergodic if ( ) 0 or 1X AÎ =  for all 

shift invariant A. 

Note: We can use this definition of ergodicity to show that X  is constant. 

( ) ( ) ( )a.s.
lim 0 or 1

n
X A X a X a¥Î = £ = £ =    

Thus, X  is a constant. 

 Definition (Mixing): ( )1 2
, , , ,

n
X X X X=    is mixing if 

( ) ( ) ( )1 2 1 2 1 2 1 2
( , , ) ,( , , ) ( , , ) ( )i ,l m ,

n nn
X X A X X B X X A X X A+ +¥ Î Î = Î ⋅ Î       

Where A and B are sets of infinite sequences (not necessarily shift invariant). We can 

look at pieces of size k instead ( )l ( , , ) ,( , )im ,
n n k n m nn m k

X X A X X B+ + +¥ +Î Î  . 

Theorem: If a sequence is mixing, it is ergodic. 

Proof: Let A be any shift invariant set 
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( )
( )

( ) ( )

0 1

 shift invariant 0 1 1

mixing 0 1 0 1
2

( , , )

( , , ) ,( , , )

( , , ) ( , , )
A n n

X X A

X X A X X

p

A

X X A X X A

p

+

Î

= Î Î

 Î ⋅ Î

=

= 
 

 




 
 

And so p must be equal to 0 or 1.  

 Example: Let 
0

 w.p.  and  w.p 1X Y p Z p= - , where 
1

,Y Z LÎ . Consider two cases: 

o If 
0n

X Xº ,  w.p  and  w.p 1X Y p Z p= -  

o If 
0n d

X X= , ( ) w.p  and ( ) w.p 1Y p Z pX = -   

Neither case is ergodic. 

PART IV – STOCHASTIC ORDERS 

Introduction 

 The Hazard Rate of a random variable X with CDF F is 

d 0

( )
( , d ) | 0

(
l m

)
( ) i

X t

f t
X t t t X tt t

F t
l 

é ùÎ + > = ³ê úë û=   

As such 

0

d
( ) ln ( ) ( ) exp ( ) d

d

t

X X
t F t F t s s

t
l l

æ öé ù ÷ç= - = - ÷çê ú ÷çë û è øò  

X follows the exponential distribution /( ) tF t e m-=  if and only if 1( )
X

t
m

l = . 

Example: If max( , )W X Y= , then 
W X Y

F F F= , and 
W X Y
l l l= + .  

 Assume X and Y have densities F and G. We define the following variable orderings 

o Likelihood ratio ordering: 
LR

X Y³  if 
)

(

(

) )

(

(

)

f g

x

y

f g

y

x
£  for all x > y. 

o Hazard rate ordering: 
HR

X Y³  if ( ) ( )
X Y

x xl l£  for all x. 

o Stochastic ordering: 
ST

X Y³  if )( ()F x G y³  for all x. 

o Increasing convex ordering: 
ICX

X Y³  if ( ) ( )X Yf fé ù é ù³ê ú ê úë û ë û   for all increasing 

and convex functions ( )xf , 

 Theorem: 
LR HR ST ICX

Y X Y X Y X YX ³  ³  ³  ³  
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Proof: For (i) (ii) , collect x and y terms on each side, integrate both sides on x > y. 

For (ii) (iii) , use ( ) exp ( )/ ( ) d
x

F x f t F t t
-¥

æ ö÷ç= - ÷ç ÷çè øò . For (iii) (iv)  see next theorem.  

 Theorem: 
icx

 and ( ) ( )  ( ) ( )Y X Y f X f YX é ù é ù£ =  £ê ú ê úë û ë û     for all convex f. (In other 

words, when the means are equal, the requirement for the f to be increasing is dropped). 

 Theorem: 
ST

X Y³  iff ( ) ( )X Yf fé ù é ù³ê ú ê úë û ë û   for any increasing f . 

Proof:   Let ~ [0,1]U U . Then 1
d

( )X F U-=  and 1
d

( )Y G U-= . Stochastic ordering 

implies 11 ( )( )F G uu -- ³ , and so 1 1( ( )) ( ( ))F u G uf f- -é ù é ù³ê ú ê úë û ë û  .   Pick { }( )
x a

xf
³

=  .  

 Note ( )xf  increasing + convex  ( )xf- -  increasing + concave. Thus, we can define a 

concave ordering ICV for increasing concave functions, and 
ICX ICV

YX X Y³  - £ - . 

 Theorem: Let X and Y be two random vectors with independent components. 

o If 
STi i

X Y³  for all i, then 
ST

( ) ( )h h³X Y  for any increasing : nh   . 

o If 
ICX

0
i i

X Y³ ³  for all i, then 
UCX

( )( )h h³X Y  for any increasing : nh + +   

that is convex in each variable. 

Proof: 

IFR & NBUE Distributions 

 We let Xt denote the residual lifetime of X given that X has survived up to time t. In 

other words, ( ) ( ) ( )

( )
| F x t

t F t
X x X x t X t +> = > + > =  . Differentiating, we find that the 

density of Xt is ( ) / ( )f x t F x+ , and so the failure rate is ( ) ( )
tX X

x t xl l= + .  

 Definition: IFR denotes the class of distributions with increasing failure rates – in 

other words, IFRX Î  if ( )
X

tl  is an increasing function of t. 

Theorem: IFR  stochastically decreasing
t

X XÎ  . 

Proof: 
0

( ) exp ( ) d exp ( ) d
t t

t t x

X X Xt
F x s s s sl l

+æ ö æ ö÷ ÷ç ç= - = -÷ ÷ç ç÷ ÷ç çè ø è øò ò . Clearly, this is increasing in 

t if and only if ( )
X

sl  is a decreasing function in s.  

 Now, consider a renewal process with IID inter-arrival time following the distribution of 

X. Let Xe be the equilibrium distribution of that renewal process – in other words, at 

any given time t far into the future, the time since the last renewal. Then 

( )
1( ) ( ) d

eX X t
F t F x x

¥
= ò , and ( ) ( )/ ( ) d

eX t
t F t F x xl

¥
= ò . 
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 Definition: NBUE denotes the class of distributions that satisfies the property of “new 

better than used in expectation”. In other words, NBUEX Î  if 

( ) 1
| ( ) d ( ) 0

( ) ( ) t

X t
X t X t F x x X t

X t F t
m

+ ¥-é ù- > = = £ = " ³ê úë û > ò
 


 

Theorem: 1
st

NBUE ( )
ee X

X XX t
m

lÎ  £  ³  for all t > 0. Proof: Elementary. 

Theorem: IFR NBUEXX Î  Î . 

Proof: 
def of  stoch. dec. 0 def of 

( | ) ( ) ( ) ( )
t t tX t X X

X t X t X X X- > = £ =      

 Theorem: 
icx

NBUE exp(1 / )X X mÎ  £ , where ( )Xm =  . 

Proof: From the previous theorem, we have that since NBUEX Î , and using (0) 1F = , 

/1 d 1
ln ( ) ln (0) ln ( ) ( )

d
( )

e e ee

x
e XX X X

x
F t F F x F x e

t
t m

m m m
l -é ù³  - ³  - ³  £ê úë û  

Using the definition of 
eX

F , the last inequality can be re-written as 

/ /( d) d x

xx

yF y e ey ym mm
¥

- -
¥

£ =ò ò  

Proposition 9.5.1. in Ross shows that this implies  icx ordering.  

 Note that 
icx

X Y£  and ( ) ( )X Y=   together imply that ar( ) ar( )X Y£  , because 

2( )x xj =  is convex. Now, consider the coefficient of variation, 2ar( )/ ( )Y Y  . Using 

the previous theorem, we can conclude that if NUBEX Î , it’s coefficient of variation is 

< 1. 

 

 

 

 

 

 

o Let us revisiting problem 1: X0 = I and Xn ~ Po(Xn-1). Here, we know 0X¥ = , 

and 
0

( ) ( ) 0X i X¥= ³ =  . Furthermore, let { }inf :
n

T n X b i= ³ > . But we 

can be absorbed in 0, so this isn’t finite. { }T n
T   is non-negative, but NOT 

uniformly integrable. Thus, we need to use our alternate result… 
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0
( ) 0

( )
T T

i
b

X B

B

i

T

b

<¥ =¥
é ù³ + ⋅ê úë û

³ <¥

³ ⋅

=    
  

In the last stage, we use something like this 

{ }
0

 or 0

(

in

) ( ) 0(1 ) [

:

]

f
n

T

n
b X

OST X X i

n

B

T

B

X

bp p
³ =
= = = - + ³

=





 
 

So let ( ) i i
T B b

X b p³ = = £ . So, ( 0) 1 i
T b

X = ³ - . 

o EXAMPLE: Symmetric random walk, with S0 = 1, inf{ : 0}
n

T n S= = . 
T n

S   is a 

non-negative martingale. So clearly, it must converge. And to 0. If we have S0 = 

-1 (ie: it’s a barrier on the left), then we lose non-negativity, and the whole thing 

becomes irrelevant.  

 


