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CONVEX OPTIMIZATION 

Chapter 2 – Convex Sets 

 Basics 

o A set is affine if it contains any line through two of its point. Alternatively, 

11 1
, , , 1

n n n
q q q+Î =  + + Îx x x x   . 

o The affine hull of a set of points is the set of all affine combinations of these 

points. 

o The affine dimension of a set is the dimension of its affine hull. Its relative 

interior is its interior relative to its affine hull 

{ }: ( , ) aff relint  for some  0C B r r= Î Ç Í >x x    

o The most general form of a convex combination is ( )x , where ( ) 1Î =x  . 

o A set   is a cone if , 0q qÎ ³  Îx x   

 The set { }( , ) :t t£x x  is a norm cone associated with a particular norm. 

 The conic hull of { }
i

x  is { }1 1
:

k k
ll + + ³x 0x l . 

o A hyperplane is a set of the form { }: b⋅ =x a x . Hyperplane with normal vector 

a, offset b from the origin; can be written as { }0 0
: ( ) 0 ^⋅ - = = +x a x x x a  

o Given k + 1 affinely independent pints (ie: 
0i

-v v  linearly independent), the k-

dimensional simplex determined by these points is { }: 0, 1
i i i
q q q+= ³ =å v . 

We can describe this as a polyhedron as follows: 

 Write 
1 0 0

,,
k

B é ù-ë û-= ê úv vv v   and 
1
, ,

k
qqé ù¢ = ê úë ûq  . All points x Î   can 

then be expressed as 
0

B ¢= +x v q  provided 0¢ ³q  and 1£¢⋅1 q  

 B has rank k (by assumptions) and k < n, and so there exists a n nA ´Î   

such that 1

2
0

A B I
AB

A B

é ù é ù
ê ú ê ú= =ê ú ê ú
ê ú ê úë û ë û

. 
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 Multiplying the boxed equation by A, we get 
1 1 0

A A¢ = -x vq  and 

2 2 0
A A=x v . We can therefore express 0¢ ³q  and 0£¢1 q  as linear 

inequalities. Together with 
2 2 0

A A=x v , they define the polyhedron. 

 Operations that preserve convexity 

o Intersection (including infinite intersection) – also preserve subspaces, affine 

sets and convex cones: 

 Example: The positive semidefinite cone 
n
+  can be written as 

{ }0
: 0

n
X X

¹
Î ³

z
z z   . Each set in the intersection is convex (since 

the defining equations are linear), and so 
n
+  is convex.  

 Example: { }3 3
: cos( 1 for [ ,) ]

i
m x i tt p p= Î £ Î -åx   can be written 

as { }
3 3

[ , ]
(cos , , cos ) 1: 1

t n
t tX mp pÎ -

-Î £ ⋅ £x  , and so is convex.  

o Affine functions: An affine function has the form ( )f A= +x x b . The image 

and inverse image of a convex set under such a function is convex. 

 Example: { }1 2 1 2
: ,Î+ = Î+ yx y x     is the image of 

{ }1 2 1 2 1 1 22
( , ) ,:´ = Î Îxx x x     under 

1 2 1 2
( , )f = +x x x x .  

 Example: { },: A C£ =bx xx d  is the inverse image of {0}+ ´  under 

( ) ( , )f A C= - -x b x d x .  

 Example: { }1 1
: ( )

n n
A BA A= + + xx x x    is the inverse image of the 

positive semidefinite cone n
+  under ( ) ( )f B A= -x x .  

 Example: { }: ( ( 1) )
c c

P £- -x x x x x , where nP ++Î   is the image of a 

unit Euclidean ball under 1/2( )
c

f P= +u u x .  

o Perspective function: ( , ) /f t t=z z , where t > 0. It normalizes the last 

component of a vector to 1 and then gets rid of that component. The image of a 

convex set under the perspective function is convex. 

o Linear-fractional function: A linear-fractional function is formed by compsing 

that perspective function with an affine function. They take the form 

( ) ( )/ ( )f A b d= + ⋅ +x x c x , with domain { }: 0d⋅ + >x c x . 
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 Separating & Supporting Hyperplanes 

o Theorem: If Ç ¹ Æ   then $ ¹a 0  and b such that  ⋅ £ " Îa b xx   and 

 ⋅ ³ " Îa b xx  . In some cases, strict separation is possible (ie: the inequalities 

become strict). 

o Example: Consider an affine set { }: mF= + Îu g u   and a convex set   

which are disjoint. Then by our Theorem, there exists ¹a 0  and b such that 

 ⋅ £ " Îa b xx   and [ ]F F³+ ³⋅  - ⋅ "b a u ba a g uu g  . The only way a 

linear function can be bounded below is if it’s 0 – as such, F =a 0 , and 

£ ⋅b a g . 

o Theorem: Consider two convex sets   and  . Provided at least one of them is 

open, they are disjoint if and only if there exists a separating hyperplane. 

Proof: Consider the open set – ⋅a x  cannot be 0 for any x in that set, else it 

would be greater than 0 for a point close to x. Thus, ⋅a x  is strictly less than 0 

for all points in the open set.  

o Example: Consider A <x b . This has a solution if and only if 

{ }: nA= - Îb x x   and m
++=   do not intersect. By the Theorem, this is 

true if and only if there exists ¹0l  and m Î   such that  m£ " Î⋅y yl   and 

 m³ " Î⋅y yl  . In other words, there is not separating hyperplane iff 

0A¹ ³ = £0 0 0 bl ll l   

Thus, only one of this sytem and A <x b  can have a solution.  

Chapter 3 – Convex Functions 

 Basics 

o We extend a convex/concave function by setting it to +/–¥  outside its domain. 

o Theorem: f is convex over   convex iff ( ) ( ) () )( f ff ³ + -xy x y x  over  . 

Proof:   choose x1, x2 and convex comb z. Apply equation with y = z and 

i
x x= . Multiply one equation by l , other by 1 l- . Add the two.   Take x, 

y. By convexity (1( ( )[ ) ( )])f t f x tf yx t y x £ - ++ -  for (0,1)t Î . Re-arrange to get 
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f(y) on one side, divide by t, take limit as 0t  . General case  consider 

( )( ) (1 )g t f t t= + -y x  and ( ) ( )(1 )( )g t f t t + - -¢ = y x y x


.   Apply previous 

result with y = 1 and x = 0.   Apply inequality with (1 )t t+ -y x  and 

(1 )t t+ -y x  . This implies an inequality about g that makes it convex.  

o Theorem: 2 ( ) 0 over  convex  convex over f f x    . 

Proof: ( )21
2

( ) ( ) ( ) (( ) ( ) () 1 )f f f f e eé ù ⋅ - + -  + - û= êë+ -úx y x y x x yy yx x   for 

[0,1]e Î . If 2f  is positive definite, get FOC for convexity.  

 Convex functions 

The following functions are convex 

Function Parameters Convex/concave… …on domain 

axe  a Î  convex   

xa 
a > 1 or a < 0 convex (0, )¥

0 < a < 1 concave (0, )¥

| |px  p > 1 convex   

log x  concave (0, )¥

x log x  convex (0, )¥

⋅ +a x b  (ie: any affine function) both n
 (ie: any norm) convex n

( )log ixeå  (the log-sum-exp func.) convex n

( )1/ni
x  (the geometric mean) concave (0, )n¥  

log det X (the log determinant) convex nX ++Î 

( )
i i

w få x  wi > 0 
Same as fi, providing they are all 

concave/convex 
 

Ways to find convexity: 

o Directly verify definition 

o Check the Hessian: for example, for 2( , ) /f x y x y=  

2

2
23 3

2 2
( , ) 0

y xy y
f x y y x

xxy xy y

é ù é ù-ê ú é ù ê ú = = -ê ú ê ú ê úë û --ê ú ê úë ûë û
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o Restrict to a line: f is convex if and only if 
1 2

( ) (1 )g t f t té ù= + -ê úë ûx x  is convex 

over [0,1] 
1 2
, " x x . For example, ( ) log detf X X= . Take the line X Z tV= + , 

restricting to values of t for which 0X  , and wlog, assume it contains t = 0. 

1/2 1/2 1/2 1/2

1/2 1/2

( ) ( ) log det ( )

log det ( ) log det log(1 )
i

g t f Z tV Z I tZ VZ Z

I tZ VZ Z Z tl

- -

- -

é ù= + = +ê úë û
é ù= + = + +ê úë û å

 

Where 
i

l  are the eigenvalues of 1/2 1/2Z VZ- - . Taking derivatives of g, we find 

that the derivative is always < 0. Thus, convexity. 

o Use the epigraph: Consider 1( , )f Y Y -=x x x . It is convex over n n
++´  . 

{ }1epi ( , , ) : ( , , ) :, 0 0, 0
Y

f Y t Y Y tt Y Y
t

-
ì üé ùï ïï ïï ïê ú= = í ýê úï ïê úï ïë ûï ï

£
î þ

x
x x x x

x
 

   

(We used Schur Complements). This is a set of LMIs, and therefore convex. 

o Jensen’s Inequality: f convex   ( )[ ] ( )f fé ù£ ê úë ûx x  , s.t. ( dom ) 1f" Î =x x . 

 Operations that preserve convexity 

o Non-negative weighed sum. 

o The perspective function ( , ) ( / )g t tf t=x x  [t > 0] is convex if f is convex. 

Example: The perspective of the negative logarithm gives the relative entropy 

and Kullback-Leibler divergence.  

o The pointwise maximum sup ( , )fÎy x y


 is an extended-value convex function, if 

( , )f ⋅ y  is convex for each Îy   [note that we do not require joint convexity of f] 

This corresponds to intersections of epigraphs. 

Example: Let f(x) be the sum of the r largest elements of x. Then we can write 

f(x) as the maximum of all the possible sums of r elements of x.  

Example: Support function { }( ) sup :s = ⋅ Îx x y y


 . Convex.  

Example: { }max
( ) sup : 1X Xl = £x x x ; family of linear functions of X.  

Note: Every convex function : nf    can be written as 

{ }( ) sup ( ) :  affine, ( ) ( )f g g f¢ "= £x x g zz z  
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Clearly, ) (( )ff £¢ xx . Furthermore, epi f is convex and so at any ( , ) epi t fÎz , 

( , )m$ ¹0l  such that ( )0 ( ) (
(

)
)

0f
f

t
tm

m
é ù é ù-ê ú ê ú⋅ê ú ê ú-ê ú ê

£  ⋅ - + -
ë

£
úû ë û

x z

x
x z x

l
l  for all x. 

Now, (1) we must have 0m ³ , else as we take t  ¥  violated and (2) we must 

have 0m ¹ , else we get =0l . Thus, can write 1( ) ( ) ( )g f t
m

= + ⋅ - £z x x zl  

Choosing a point on the boundary of the epigraph, ( )t f= z  and so 

( ) ( )g t f£ =z z . As such, it’s a global underestimator with (( ))g f= xx .  

o The minimum inf ( , )
y

fÎ x y


 is convex provided it is > -¥  and ( , )f x y  is jointly 

convex in (x, y) over n m´   and mÌ   is convex. This corresponds to the 

projective of a (convex) epigraph onto the subspace of x. 

o The composition with an affine function ( )f A +x b  is convex, provided ( )f ⋅  is 

convex. 

o The general composition ( )1
( ) ( ), , ( )

k
f h g g=x x x  behaves as follows: 

Result h h g 

Convex Convex Nondecreasing Convex 

Convex Convex Nonincreasing Concave 

Concave Concave Nondecreasing Concave 

Concave Concave Nonincreasing Convex 

These can be derived (for the case k = 1 and x scalar) by noting that the second 

derivative of f is given by 

( ) ( )2
( ) ( ) ( ) ( ) ( )f x h g x g x h g x g xé ù¢¢ ¢¢ ¢ ¢ ¢¢= +ê úë û  

 Conjugate Functions 

o ( )dom
*

 
( ) sup ( )

f
f fÎ= ⋅ -

x
y y x x . It’s the maximum gap between the linear function 

g(x) = yx and f. If f is differentiable, this occurs at a point at which ( )f ¢ =x y . 

Basic examples: 

f(x) *f (x) Domain  f(x) *f (x)  Domain

ax + b –b {a} x log x ey – 1 


–log x log(1/y) – 1 ++
-   1/x –2(–y)1/2 

+
-  

ex y logy – y +
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Example: 1
2

( )f Q=x x x  with nQ ++Î  . Then 1
2

Q⋅ -y x x x  which is bounded 

above and maximized at 10Q Q-- = =y xx y , and * 11
2

( )f Q-=y y y .  

Example: Let ( ) 0 if ,  otherwise I Î ¥=x x


 . Then the conjugate of this 

indicator is the support function *( ) sup ( ) ( )I sÎ= ⋅ =
x

y y x y
  

.  

Example: If ( )f =x x , then { }*

*
( ) Indicator f  of : 1nf = £y y y . To see why; 

if 
*

1>y , then  s.t. 1, 1$ ⋅ > £z y z z . Take t=x z  and let t  ¥ . If 
*

1£y

, then 
*

⋅ £ £x yx y x . Therefore, 0 maximizes -⋅x y x  maxed at 0.  

Example: ( )( ) log ixf e= åx . Differentiating ( )f⋅ -y x x  and setting to 0, we 

get /i ix x

i
y e e= å  and *( ) log  i  , 1f

i i
f y y= ³ ⋅ =å 0 1 yx y  and ¥  otherwise 

[this is valid even if some of the components of y are 0].  

Example: Company uses resources r at price p prices produces revenue S(r). 

The maximum profit that can be made from a given price is 

*( ) sup [ ( ) ] ( )( )M S S p= - ⋅ = - -
r

p r p r .  

o From the definition, we get *( ) ( )f f+ ³ ⋅x y x y . 

o If f is differentiable, the maximizer of ( )f⋅ -y x x  satisfies ( )f= y x . Thus, for 

any z for which ( )f= y z , * (( )) ) (f ff  -= ⋅z z zy  

o The conjugate of ( ) ( )g f A= +x x b  is * *( ) ( )g f A A- -= -y y b y   . 

o The conjugate of the sum of functions is the sum of conjugates. 

o Let f be a proper convex function. A vector g is a subgradient of f at x if 

( ) ( ) ( ) nff ³ + ⋅ - " Îx g x z zz  . ( )f¶ x  is the set of all subgradients at x. It is a 

closed and convex set. If x is in the interior of the domain of f, ( )f¶ x  is non-

empty, and if f is differentiable at x, ( ) { ( )}ff ¶ =x x . 

 If f is a proper convex function, then *( ) ( ) ( )f ff Î⋅ ¶= + yx y y xx  [if f 

is closed, these are also equivalent to *( )fÎ ¶x y . 

Proof: Follows directly from the definition of f*.  

 Chernoff Bounds & Large Deviations 

o Chernoff Bounds – { }
( ) ( ) [ ] 0X t t X

X t
e X t e el l l l- -

³
£  ³ £ " ³   . 
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o Define the cumulant generating function ( ) log [ ]Xef ll =  , and define 

( ) ( )f fl l+ =  if 0l ³  and ¥  otherwise. 

o Making the Chernoff Bound as tight as possible, we get  

( ) ( )*
0 0

( ) inf ( ) exp sup [ ( )] exp [ ]t XX t e e t f f tl l
l l l l-
³ ³ +³ £ = - - = -   

o Similarly, ( ) [ ] provided 0 e m m⋅ +Î £ ⋅ + ³ " ÎXX z zl l   . Then, defining 

( ) log [ ]ef l ⋅= Xl , we find that  

{ }
{ }
{ }

,

*

( ) inf ( ) :  

inf s

log

up ( ) ( )

inf ( ) ( ) (0)

f

f

S f f

m m m

l l
Î

Î £ + - ⋅ £ " Î

= - ⋅ +

= - + = -
z

X z z

z
l

l

l

l l

l l


 

 
 

o Example: Let X be multivariate Gaussian: ~ (0, )N IX . We then have 

1
2

( )f l = ⋅l l . Consider { : }A= £x x b . Now 

 By LP duality: 
,

( ) sup ( ) inf
A

S l
³=-Î- = - ⋅ = ⋅

z u u 0
z b u

l
l  

 

 As such, 1
2

( ) inf  s.t. ,log AÎ £ ⋅ + ⋅ ³ + =X b u u 0 u 0l l l l  

 Eliminating l , we get 1
2

lo ( i fg ) n AA³Î £ ⋅ +
u 0

X b u u u    

 Using QP duality, we can write this program as 
2

11
2 2

sup ( )A-
³ - -
0

bl l . 

 Intepreting l  as a slack variable, this becomes 
2

1
2 2

sup
A £ -
x b

x  

 As such, 1
2

( ) exp dist(0, )X é ùÎ £ -ê úë û   . 

Chapter 4 – Convex Optimization Problems 

 Terminology 

0
min ( )

 s.t. 0 1, ,

( )

)

0 , ,

(

1
i

i

i

f x

f x m

h x i p

£ =
= =




 

o   is the feasible region of the problem 

 Equivalent Problems 

o Informal definition of equivalent problems: from the solution to one problem, a 

solution to the other is readily found, and vice versa. 
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o Change of variables – consider a one-one function : n nf    with 

( )dom f fÍ . Then replacing x by ( )xf  leads to an equivalent problem. 

 Example (Linear-fractional programming): Consider 

min  s.t. ,A G⋅ +
⋅ +

= £c x d
e x f

x b x h  

Simply write the objective as ( ) ( )1
⋅ + ⋅ +

⋅ +x
e x f e x f

c d , and min z⋅ +c y d . 

o Transformation of objectives & Constraints – suppose: 

 
0
:y    is monotone increasing. 

 
1

,, :
m

yy     satisfy ) 0(
i

uu uy £  £  

 
1
, , :

mm p
yy ++     satisfy 0( ) 0

i
uuy =  =  

Then composing f and h with these functions leads to the same problem. 

o Eliminating equality constraints – say we find a function : k nf    such 

that x satisfies the equality constraints if and only if it can be written as 

( )x zf= . Then we can eliminate the equality constraints and optimize 

0
( ( )) s.t. ( ( )) 0

i
f z f zf f £  over z. For example, the equality constraint Ax = b  

with m nA ´Î   (with solution x0) can be replaced by 
0

F= +x z x , with 

[ rank ]n n AF ´ -Î  . This preserves convexity, since this is an affine transformation. 

Optimizing over some variables – it is possible to optimize over each 

variable one-by-one; this is especially true when some constraints involve only a 

subset of the variables. For example, take 
1( ) 0:

min
if

P£x x
x x . Minimizing over x2 

only gives an objective of 
1 1
Sx x . Thus, the problem is equivalent to 

1 1: ( ) 0 1 1
min

if
S£x x

x x . 

o Epigraph form – the problem above is equivalent to minimizing t subject to 

0
( ) 0f x t- £ . Particularly useful for minimax problem. 

Example: 
2

1 ,
min max min  s.t.  

i ti r i
it t£ £ - ³ "= -

x x
x y x y  – a QCQP.  

o Implicit & Explicit constraints – if the objective function has a restricted 

domain, it can often be unrestricted by adding additional constraints instead, and 

vice versa. 

 Convex problems 
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A convex optimization problem is 

0
convex

0 1, , con

min (

vex

1, , afin

)

 s.t. ( )

e
i

i

i

i m

a x b i

f

f

p

¬
£ = ¬

= = ¬

x

x 


 

If f0 is quasiconvex, the problem is a quasiconvex optimization problem. In either case, 

the e -suboptimal sets are convex. An optimality condition for x is 

0
( ) ( ) 0  feasiblef ⋅ - ³ "x y x y  

Geometrically, 
0
( )f x  is a supporting hyperplane to the feasible set at x. Alternatively, 

anywhere feasible we try to move from x yields an increase in objective. 

Proof: For a convex function, 
00 0
( )( ) ( ) ( )ff f³ + ⋅ -x x y xy . If the optimality condition 

is met, 
00

(  ) ( )f f³ "xy y . Conversely, suppose 
0

s.t. ( ) ( ) 0f$  ⋅ - <y x y x . Then consider 

[0,1( ) ( , ]1 )t t t t= Î+ -z y x . This is feasible, but 
d 0 0
d

0
( ( )) ( ) ( ) 0

t t
f ft

=
=  - <z x y x . So 

close to 0, we can decrease f0 by moving away from f.  

Examples: 

 For unconstrained problems, 
0
( ) 0f =x  

 For problems with Ax = b, every solution can be written as , ( )A= + Îy x v v   

So 
0
( ) 0 ( )f A ⋅ ³ " Îx v v  , but this is a nullspace, so 

0
( ) 0 ( )f A ⋅ = " Îx v v 

In other words, 
0
( ) ( ) ( )f A A^Î = x   , ie: 

0
 s.t. ( )f A$  + =x 0n n . 

 For problems with x 0 , need 
0
( )f ³x 0 , else 

0
( ) ( )f ⋅ -x y x  unbounded 

below. So reduces to 
0
( ) 0f ⋅ ³x x . This gives complementary slackness… 

 

Examples of convex optimization problems. 

o Linear programs (LP) 

 Example (Chebyshev Center): Consider the problem of finding the 

largest ball { }|
c

r= + £x u u  that lies in a polyhedron. Require that 

  lies on one side of £⋅a x b  is equivalent to requiring: 

 { }sup
c cr

r
£

⋅ + £  £⋅ ⋅ +
u

a x a u a x ab b   

 Example: ( )min max
i i i

⋅ +
x

a x b  can be linearised using the epigraph.  

o Linear-fractional programs 
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{ }:
min s.t. : , G A⋅ + >

⋅ +
Î = £ =

⋅ +x e x f 0

c x d
x

e x f
x x h x b  

This is a quasiconvex program, which can be transformed into 

,
min

 s.t. 0, 0, 1, 0
z

A z zG z z

z

£
⋅ +
- - = ⋅ + = ³

y

y b e y f

c y d

y h
 

Proof: Note that 1 ,z z
⋅ +

= =
e x f

y x  is feasible for the transformed problem with 

the same objective. Similarly, x = y/z is feasible for the original problem, if 

0z ¹ . Thus, the original and modified objectives are both > and < each other. 

If z = 0 and x0 is feasible for the original problem, then x = x0 + ty is optimal 

for the original problem; taking t  ¥  allows us to gets the two objectives 

arbitrarily close to each other.  

o Quadratic programs (QP) 

{ }1
2

min s.t. ,P G AÎ = £ =+ ⋅ +
x

x x q x xr h bx x   

Where 0P  . 

 Example: Distance between polyhedra 
2

1 2 1 22 1 2
min  s.t. , Î- Îx x x x  . 

 Example: Consider an LP minimizing ⋅c x  where ( ) =x x , 

ov( ) = Sx . Then ar( )⋅ = Sc x x x  . Can minimize g⋅ + Sc x x x .  

 Example (portfolio problems): pi is relative price change of asset i 

(change/start) and xi is amount of asset bought. Mean return is ⋅p x , 

variance is Sx x . Minimize variance subject to given mean return. 

Budget constraint 1⋅ =1 x . Short sales: Can set long short= -x x x  and 

require sho l ngrt oh£ ⋅⋅ 1 x1 x . Transaction costs: Can set 

init buy sell= + -x x u u  and constraint ( ) ( )sell sell buy buy1 1f f- ⋅ = + ⋅1 u 1 u .  

o Quadratically constrained quadratic programs (QCQP) 

1 1
0 0 02 2

min s.t. ,
i i

P P £ Î+ ⋅ + + ⋅ +
x

x x q x r x x q x r 0 x    

Where the 
i

P  are positive definite. In this case, we are maximizing a quadratic 

function over an intersection of ellipses and polyhedra. 

o Second-order cone program (SOCP) 

2
min  s.t.   ,1, , ,  i iA i m£ ⋅ + = Î+

x
f x x xb c x d    
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If  
i

i"=c 0 , this reduces to a QCQP (square both sides to see). Note that the 

direction of the inequality is important! 

 Example (quadratic constraint): 

( )
1
2

2

(1 ) 1
0 1

2A
A A

+ ⋅ +
£  £ -+ ⋅ ⋅ -+x x b

b x c
bc c

x
x x   

 Example (robust LP): Consider min  s.t. ii⋅ ⋅ £
x
c x a bx  for all 

{ }| 1i i
i

i PÎ = + £a a u u  (ie: ellipsoids). Can write constraint as 

{ }, ,1sup | i i i ii iP P£ £ ⋅+ + £⋅ b a xa x u bx u x   , an SOCP. 

Norm terms are regularization terms; prevents b from being high in 

directions where uncertainty in a is high.  

Note: If { }: A= == x x f   is a polyhedron with k vertices, then 

{ }sup : Î⋅a x x   must occur at a vertex, so 1 inequality just turns into k 

inequalities. Alternatively, { } { }
,

sup inf
A A£ ³=

⋅ = ⋅
x zf a 0z

a x f z  (strong 

duality) and so write , , 0A⋅ £  ⋅ £ = ³a x b f z b z a z .  

 Example (uncertain LP): Say ~ ( , )i i
i

N Sa a . Can ask for 

( )i i h⋅ £ ³a x b . Note that 1/2

2
D( )i

i i
⋅ = S = Sa x x x x   . Can then 

express probability constraint as SOCP.  

o Semidefinite programs (SDP) 

1 1
min  s.t  ,.  0

n n
F F G⋅ + + + Î

x
c x x xx    

Multiple LMIs are easily dealt with by forming a large block diagonal LMI from 

the individual LMIs. If the matrices F are diagonal, this is an LP. 

 Example (bounds on eigenvalues): Consider min 
2

A  (
2

A  is max 

singular value). Note 2

2
s A s IA A£    . Using Schur complements, 

2 0 0
sI A

A A s I
A sI

é ù
ê ú-  ê ú
ê úë û


   

(Clearly, 0sI   and the Schur complement is AA
s

S sI= -


). Thus, 

simplify minimize s subject to the constraint above. The original LMI was 
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quadratic – Schur complements allowed us to make it linear. [Similarly, 

we can bound the lowest eigenvalue: 
min

( )A s A sIl ³   ]   

 Example (portfolio optimization): Say we know 
ijij ij

UL £S £ . 

Given a portfolio x, can maximize Sx x  s.t. that constraint and 0S   

to get worst-case variance. We can add additional convex constraints 

 Known portfolio variances: 2
k k k

sS =u u  

 Estimation error: If we estimate ˆS = S  but within an 

ellipsoidal confidence interval, we have ( )ˆC aS-S £ , where ( )C ⋅  

is some positive definite quadratic form. 

 Factor models: Say p Fz d= + , where z are random factors and 

d represents additional randomness. We then have 

factor
F F DS = S + , and we can constraint each individually. 

 Correlation coefficients: ij

ii jj
ij
r

S

S S
= . In a case where we know 

the volatilities exactly, constraints on 
ij
r  are linear…  

 Example (expressing QCQP and SOCP as SDP): Using Schur 

complements, we can make these non-linear constraints linear 

1/2

1/2
1
2

0 0
( )

I P

P
P

é ù
ê ú£  ê ú- ⋅ -ê ú

+ ⋅ +
ë û

x

x
x x

g
x g

x h
h


  

( )
0

( )

I F
F

F

é ù⋅ + +ê ú+ £ ⋅ +  ê ú+ ⋅ +ê úë û

g x h x q
x q g x h

x q g x h   

 Geometric Programming 

o A function 1 2

1 21
( ) nk k k

K a a

k nk

af c x x x
=

= åx  , with ck > 0 and 
i

a Î   is a posynomial 

(closed under +, ´). K = 1 gives a monomial (closed under ,́¸ ). 

 Posynomial Monomial Posynomial´ =  

 Posynomial Monomial Posynomial¸ =  

o A geometric program is of the form 

0
min ( ) s.t. ( 1 ( ) 1,) ,

ii
f hf £ = >xx x x 0  
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f are posynomials, h are monomials. Can deal with (( ))f g£ xx  and ( ) ( )h g=x x  

by dividing. Can maximize by minimizing inverse (also posynomial). 

o Example: 
1 2 3 1 2 2 3 1 3

max  s.t. / 2,x x cx x x x x x x £+ + >x 0  [min volume box] can 

be written as 1 1 1
1 2 3 1 2 2 3 1 3

min  s.t. (2 / ) (2 / ) (2 / ) 1,x x x x x c x x c x x c- - - £+ + >x 0 .  

o To make convex, substitute log i

i i

y

i
x ey x  == . Feed in and then take logs of 

objective and constraints. Result is convex. 

 Existence of Solutions 

o Theorem (Weierstrass): Consider the problem min ( ) s.t. nf Î Ìx x  . Then, 

if   is non-empty, f is lower semicontinuous over   and either (1)   is compact 

(2)   is closed, and f is coercive (3) There exists a scalar g  such that the level 

set { }( ) : ( )fg g= Î £x x   is nonempty and compact, then the set of optimal 

minimizing solutions of f is non-empty and compact. 

Proof: Let *f  be the optimal objective, and *
k

fg  . Then the set of optimal 

solutions is 
1

( )
k k

g
¥

=  . If (3) is true, this is an intersection of nested non-empty 

compact sets – it is therefore non-empty and compact. 1 3  For *fg > , ( )g  

must be non-empty, and by semi-continuity of f, it is closed. Since   is compact, 

this closed subset is also compact. 2 3  ( )1( ) ( , ]fg g-= -¥ Ç   since   is 

closed, the intersection is closed and so is the inverse by semi-continuity of f. 

Since f is coercive, ( )g  is also bounded. Thus, ( )g  is compact.  

o Example: Consider 1
2

min ,P - ⋅ Îx x b x x  .  If l  is the smallest eigenvalue of 

P, then we can say that 
2

2
1
2

1 P l- ⋅ ³ -x x b x x b x . This is coercive if 

0l > . Thus, a solution exists if 0P  .  

Chapter 5 – Duality 

 The Lagrangian Function 

o 
0

min  ( ) s.t. ,) (( )f £ =0 hx xf x 0 . We let 
0

( , , ) ( ) ( ) ( )f= + ⋅ + ⋅x x f x h xl n l n  

be the Lagrangian, and ( , ) inf ( , , )=
x

xg l n l n . This clearly underestimates the 

optimal value, because everywhere in the feasible region, 
0

( , , ) ( )f£x xl n . 
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o Writing the original program as 
0 01 1

min ( ) ( ) ( )
m p

i ii i
f I f I h-= =

é ù é ù+ +ê ú ê úë û ë ûå åx x x , 

where I– and I0 are indicator functions for the negative orthant and {0}, we see 

the Lagrangian replaces the indicators (“hard walls”) by “soft walls”. 

o Example: min   s.t. A⋅ =x x x b . ( )A= ⋅ + ⋅ -x x x bl . Differentiating, set to 

0, minimum is at 2 0A+ =x l , so ( )1
2

( ,)g A-= ll l .  

Example: 2min   s.t. 1
i

W x =x x . Involves partitioning the xi into either a “+1” 

group or a “–1” group; 
ij

W  is the cost of having xi and xj in the same/different 

partitions. 2( , ) ( ) diag( )W Wé ù= + ⋅ - = + - ⋅ê úë ûx x x x 1 x x 1n n n n  . Minimizing 

over x, we find that ( )  if diag( 0)g Wé ù= - ⋅ +ê úë û1n n n   and -¥  o.w. Can use to 

find bound – for example, using 
min

( )Wl=- 1n , feasible because 
min

0W Il-  . 

 The Lagrangian & Convex Conjugates 

o Consider min ( ) s.t. ,f A C£ =bx xx d . The dual function is 

*

( , ) inf ( ) ( ) ( )

inf ( ) ( )

sup ( ) ( )

( )

g f A C

f A C

A C f

f A C

é ù= + ⋅ - + ⋅ -ê úë û
é ù= - ⋅ - ⋅ + + +ê úë û
é ù= - ⋅ - ⋅ - - - -ê úë û

= - ⋅ - ⋅ - - -

x

x

x

x x b x d

b d x x

b d x x

b d

l n l n

l n l n

l n l n

l n l n

 

  

 

 

Example: ( )f =x x  and only equality constraints. The conjugate of a norm is 

the indicator of the unit ball in its dual norm, so *( )
otherwis

1

e

C
g

ìï- ⋅ïï= í
î

£
ï -¥ïï

dn n
n



. 

Example: Min entropy: min log  s.t. , 1
i i

x x A £ ⋅ =å x b 1 x . The conjugate of x 

log x is ev – 1, and so ( , ) exp ( ) 1
i

g An n né ù= - ⋅ - - - - -ê úë ûåbl l l .  

 The Lagrange Dual Problem 

o The dual problem is max ( , ) s.t. g ³0l n l , with domain { }( , ) : ( , )g >-¥l n l n . 

o Weak duality implies that **d p£ . If the primal is unbounded below, the dual is 

infeasible. If the dual is unbounded above, the primal is infeasible. 

o The dual is always convex and can be used to find a good lower bound. 

o Strong duality holds under Slater’s Conditions; the problem is convex, and there 

exists a point such that every inequality constraint is strictly satisfied. If the 

constraints are linear, only feasibility is needed, not strict feasibility. 
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o Example: QCQP: 1 1
0 0 02 2

min  s.t. 0
i i i

P P+ ⋅ + + £⋅ +x x q x r x x q x r  , where 

0
0, 0

i
P P  . The Lagrangian is 

( ) ( ) ( )
( ) ( ) ( )

1
0 0 02

( , )

P

i i i i i
P P

l l

l l= + + + ⋅ + + ⋅å å
q r

x x x q q x r r

l

l l
  

  

³0l  and so ( ) 0P l  . Differentiating and setting to 0, we find the dual 

problem is 11
2

max ( ) ( ) P( ) ( ) ( ) s.t. g -= - +q q r 0l l l l l l  . * *p d=  if we have 

strict feasibility.  

o Example: Min entropy (above) has dual ( )( )1

0,
max iAe en

n n --
³

-- ⋅ - - åb l
l l



. 

Optimizing over n , we get ( )( )

0
max 1iAe³

-- ⋅ - +åb l
l l



, a GP.  

 Geometric Interpretation/Proof of Strong Duality 

o Consider { }0
( ( ), ( ), ( )f= f x h x x . Then { }* inf : ( , , ) , ,p t t Î £ == u 0 0u vv  , 

and { }( , ) inf ( , ,1) ( , , ) : ( , , )g t t= ⋅ Îu v u vl n l n  . To assuming the infemum exists, 

the inequality ( , ,1) ( ( , ) , ,, () , )g tt⋅ ³ " Îuu v vll n n   defines a supporting 

hyperplane. Looking at the expression for *p  and ( , )g l n , it is clear that 

* ( , )gp ³ l n  when ³0l , because it involves more constraints. 

o Let ( ),{ },m
+ += + 0    be an “epigraph” of   which extends it “up” in the 

objective & inequalities. This then allows us to write { }* inf : ( , , )p t t= Î0 0  , 

and, for ³0l , { }( , ) inf ( , ,1) ( , , ) : ( , , )g t t= ⋅ Îu v u vl n l n  . Once again, this 

defines a supporting hyperplane to  , and the dual problem involves finding the 

supporting hyperplane with least t. Since *( , , ) Bd( )p Î0 0  , we have 

* *( , , ) ( , ,1) ( , )gp p= ⋅ ³0 0 l l nn , which is weak duality. If there is a non-vertical 

supporting hyperplane at *( , , )p0 0 , then strong duality holds. 

o To prove strong duality, let { }*( , , ) :s s p= <0 0 . This set does not intersect 

with  . Create a separating hyperplane ( , , )ml n   so that 

 *( , , ) ( ( , ,, , )) t t pt a m m am £ "  £⋅ Î £u v u vl n    

 *( , , ) ( ( , , ), ) ,, 0p ttm a m m³ ³ " Î ⋅ ³ ³uu 0v vl n l   . Otherwise, the 

LHS would be unbounded below as we went up the epigraph. 
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Divide first equation by m  and substitute in the second to find the Lagrangian is 

> *p . 
 

If 0m = ; second equation above becomes ( , ) ( )  ( , , ), 0 t³⋅ " Îu vu vl n   . 

Applying this to the strictly feasible point with v = 0 and u < 0, we find that 

0=l , and so 0¹n  [supporting hyperplane cannot be 0 vector], so 0³⋅vn . 

But the problem is convex, so A= -v x b . But since we have an interior point 

with 0⋅ =vn , there are points around that interior point with 0⋅ <vn . Thus, 

unless A = 0n  [contradiction if A full rank] we have a contradiction. 

Geometrically, this is equivalent to saying the hyperplane must pass to the left of 

our interior point.  

 Interpretations of Duality 

o Multicriterion optimization: Consider ( )0
min ( ), ( )ff x x . One way to obtain 

every pareto-optimal point is to minimize ⋅Fl . Since we can re-scale this 

without changing the minimizers, 
0
( )f + ⋅x Fl  is an example of such a program, 

which is precisely the Lagrangian. 

o Shadow prices: The dual problem is the lowest cost given we can buy some 

“constraint violation” and be rewarded when we don’t violate them. Clearly, this 

is lower than our lowest cost without these amenities. When strong duality holds, 

there is a price that makes us indifferent. This is the “value” of the constraints. 

 Optimality conditions 

o Complementary Slackness: Consider that, if *x  and * *( , )l n  are primal and 

dual optimal points with zero duality gap  

* * * * * *
0

* * *
0
( ) ( , ) inf ( , , ) ( , , ) ( )ff g = £ £=

x
x x xx l l nl nn    

As such, every inequality in this line must be an equality. Now, recall that 

* * * * * * * *
0

( , , ) ( ) ( ) ( )f= + ⋅ + ⋅x x f x g xl n l n . This implies that at optimality 

* *( ) 0⋅ =f xl . Since each term is non-positive, we must have * * *( ) 0
i i
fl =x . Only 

active constraints at the optimum can have non-zero multipliers. 

o KKT Conditions: Based on all the above, we find that for any problem for 

which strong duality holds, any primal-dual optimal pair must satisfy 
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* * * * * * * *( , , ) ( ) ( ) ( ) 0 = £ = ³ ⋅ =x 0 f x 0 h x 0 0 f xl n l l  

If the problem is convex, these are also sufficient conditions, because since 

* ³0l ,   is convex, and so the first condition implies   is minimized. Finally, 

complementary slackness shows we have 0 duality gap. 

Example: 1
2

min  s.t. P A+ ⋅ + =x x q x r x b . KKT conditions are *A =x b  and 

* *P A+ + =x q 0n , or 
*

*0

P A

A

é ùé ù é ù-ê úê ú ê ú=ê úê ú ê ú
ê úê ú ê úë ûë û ë û

x q

bn



.  

Example: ( )min log( )  s.t. 0, 1
i i

xa ³ ⋅ =- +å x 1 x . This attempt to maximize 

communication capacity given total available power of 1 for each channel. KKT: 

1

0, 1 0 0

0
i i

i i i i

ix
i

x x
a

l

l n

l
+

"

³

-

⋅ = ³ =

- + =

1 x
 

Clearly, 
i

l  only acts as a slack variable in the first equation. So 

( )
1

10, 1 0
i

i

i

i

i i

x

x

i

x x
a

a
n

n
+

+

³ "

³ ⋅ = - =1 x
 

The first equation gives 1
i i

x
n

a= - , but this can only work if 1 1
i in a

a n£  £ . If 

this were not the case, xi would go negative. Thus 

{ }
1

1
1 /

max 0,
0 1 /

i i

i
i i

x n
na

a n a
a

n

ìï - <ï= =
ï ³

-í
ïî

 

Using the sum constraint, { }1
1
max 0, 1

n

ii n
a

=
- =å . This is easy to solve.  

 Using the dual to solve the primal 

o Example: 
1

min ( ) s.t. 
n

i ii
f x b

=
⋅ =å a x , 

1
( , ) ( ) ( )

n

i ii
f x bnn

=
+ ⋅ -= å a xx . The 

dual function is *

1 1
inf ( ) ( )( )

n n

i i i ii i
g b f x b f an nn n n

= =

é ù- + + ⋅ = - + -ê úë û
= å åx

a x . 

The dual therefore involves a single scalar variable (simple to solve). We then use 

the fact that the optimal point minimizes *( , )nx , which is convex.  

 Sensitivity analysis 

o Consider 
0

min ( ) s.t. ,) (( )f £ =u hx xf x v . We let *( , )p u v  be its optimal value. If 

the problem is convex, this is jointly convex (its epigraph is cl( ) , above). 

o Global inequality: Under SD ** * *( , )( , )p p³ - ⋅ - ⋅0 0 uu vv l n . To prove, 
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* * * * * * *
00

( , ) ( , ) ( ) ( ) ( ) ( )p g f f£ £ + ⋅ ++ ⋅ ⋅= ⋅ +0 0 x f x h x x u vl l nn l n  

o Local Result: If p differentiable & SD,  * * * *( , )  and ( , )p p =-  =-
u v

0 0 0 0l n  

*
* **

0
[By global inequa

( , 0)(0, 0)
lim lity]i

t

i

p t pp

u t
l

-¶
³= -

¶

e
 

Taking t negative gives the opposite inequality. 

 Examples 

o Consider ( )min log exp( )i
i

b⋅ +å a x . The dual isn’t particularly interesting. But 

the dual of ( )min log exp( )  s.t. 
i

y A + =å x b y  is entropy maximization. The 

same is true of A -x b .  

o This can be done with constraints; ( )f b⋅ +a x  can be transformed to ( )f y .  

 Theorems of the Alternative 

o Weak alternatives: 

 Non-strict Inequalities: Consider 

, ( )  has sol min 0 s.t( ) . 0 (and not )n£ =  = ¥0 h x 0f x   

The dual function has the property ( , ) ( , )g ga a a=l n l n  and is 

( , ) inf ( ) ( )g é ù= ⋅ + ⋅ê úë ûx
f x h xl n l n  

Because of the homogeneity, if there is any ( , ) 0g >l n  with 0³l , 

*d = ¥ . If that’s infeasible, * 0d = . Thus, since **d p£ , we find that 

(( , ) 0, 0 feasi ) 0, ( ) 0 infeasiblebleg ³ > £ =f x h xl n l  

In fact, at most one of the two is feasible – weak alternatives. 

 Strict inequalities: If the inequality ( )<f x 0  is strict, the alternative is 

(( , ) 0, 0 feasi ) 0, ( ) 0 infeasiblebleg ³ > < =f x h xl n l  

We can show this directly from the definition of the dual function, if we 

assume there exists ( )<f x 0 , then 0,  s.t. ( , ) 0g$ > <l n l n . 

o Strong alternatives – when fi are convex and hi are affine, we might be able to 

prove strong alternatives; that exactly one of them must hold 

 Strict inequalities: First, consider 

( )* mi( n  s.t. ( ) , 0) ,  feasible
i

p s f sA A = =< <= £f x x xb b0 x  
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The dual function is ( , ) ( ) min (1 )
s

g A sé ù= ⋅ - + - ⋅ê úë ûx b 1l n n l . This is only 

finite if 1⋅ =1 l . So the dual is ( )* max ( , ) s.t. 1,d g= ⋅ = ³1 0l n l l . 

Provided strict feasibility holds, strong duality holds and * *p d= . So if 

the original system is infeasible (p* > 0), then there exists a 

( ) ,, 0g ³ >0l n l . Similarly, if there exists such a ( , )l n , then p* > 0… 

feasible infeasible
infeasible feasible

( , 0,, ))  (  gA = ³ ><f x 0 x b 0l n l  

 Non-strict inequalities: Consider ( ) ,A =£f x 0 x b  the program is the 

same as above, but we need the optimum to be attained so that * 0p >  if 

the system is infeasible. In that case, , ( , ) 0g³ >0 l nl  is clearly feasible. 

o Example: Consider A £x b . Then ( )  if g A=- ⋅ =b 0l l l  and o.w.-¥  The 

strong system of alternative inequalities is , 0, 0A³ = ⋅ <0 bl l l .  

o Example: Take m ellipsoids { }: ( ) 2 0 ,i i n
i i i i

f A A ++= = + ⋅ + £ Îx x x x b x c  . 

We ask if the intersection has a non-empty interior. This is equivalent to solving 

the system ( )<f x 0 . Here, ( ) ( ) ( )( ) inf 2 i i
i i i i

g Al l l= + ⋅ +å å åx
x x b x cl  . 

Differentiating, setting to 0 and using obvious notation, 1( )g Al l l l
-= - +b b cl  . 

As such, the alternative system is 1, Al l l l
-- + ³>0 b b c 0l  . 

 

To explain geometrically, consider that the ellipsoid with ( ) ( )f = ⋅x f xl  

contains the intersection of all the ellipsoids above, because if ( )f £x 0 , then 

clearly a positive linear combination of them is also < 0. This ellipsoid is empty if 

and only if the alternative is satisfied [prove by finding inf ( )f x ].  

o Example: Farkas’ Lemma: the following two systems are strong alternatives 

, 0, 0A A³ ³= ⋅ <x x 0 y y bb   

o ……………….. 

 Duality & Decentralization 

o Consider 
1 1

min ( ) s.t. ( ) ,
k ki i i

ii i

i

i
f

= =
£ Î Wå å 0 xx g x  [note: the vector g 

represents a number of inequality constraints]. The Lagrangian is

1 1
( ) ( )( , )

k ki i i

ii i
f

= =
+= ⋅å åx gx xm m . The dual is 

1
( ) ( ) s.t. 

k

ii
g g

=
= ³å 0m m m  

where ( ) inf ( ) ( )
i

i

i i i
i i

g f
ÎW

= + ⋅
x

x g xm m  
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o For example xij could be the quantity of resource j allocated to acitivity i, and we 

might want to maximize utility. Each component of gi corresponds to one 

resource constraint.  The resulting geometric multipliers can be considered as 

prices for a given resources. 

o The Tatonnement procedure guesses initial prices, solves the problem, and then 

adjusts them to ensure each resource is used exactly. 

 Duality & Combinatorial Optimization 

o The knapsack problem is max   s.t. , {0,1}nC⋅ £ Î⋅v x w x x . 

 
{0,1]

( ) max ( ) max([ / ] , 0)n i i i
g C C w v wm m m m m

Î
= - ⋅ + = + -åx

v w x  

 Assume WLOG 1

1

n

n

v

w

v

w
³ ³ . There is then a breakpoint *( )I m  until 

which /
i i

v w m³ . We can write 
*( )

1
( )

I

i ii
g C v w

m
m m m

=
= + -å  

 The dual problem is to make this as small as possible for 0m ³ . Consider 

that 
* *( ) ( )

1 1
( )

I I

i ii i
g v C w

m m
m m

= =

æ ö æ ö÷ ÷ç ç= + -÷ ÷ç ç÷ ÷è ø è øå å . This is piecewise-linear in m – 

the minimum occurs when the gradient switches from negative to positive; 

so { }opt

1
min :

I

ii
I I w C

=
= >å . We then want m  to take its smallest 

possible value, which isd opt opt

* /
I I

v wm =  

 This gives an upper bound 
opt opt

*

1 1

I I

i ii i
v C wm

= =

æ ö æ ö÷ ÷ç ç+ -÷ ÷ç ç÷ ÷è ø è øå å . 

o For a lower-bound, consider the solution with opt1 if 
i

x i I= <  and 0 otherwise. 

This is clearly feasible, and corresponds to the greatest “bang for buck” policy. 

 

A More Rigorous Approach to Optimality Conditions 

 Unconstrained optimization: interior solutions of min ( ) s.t. nf Î Ìx x   

o Necessary conditions: If *x  is in the interior of the feasible region and is an 

optimal minimum, then *( ) 0f =x  and 2 *( ) 0f x  . 

o Sufficient conditions: If *x  is in the interior of the feasible region and 

*( ) 0f =x  and 2 *( ) 0f x  , then *x  is a strict local minimum. 
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o When using these conditions, (1) verify existence (2) find points with ( )f =x 0  

(3) compare those to points on the boundary. 

o Consider, instead ( , )f x a . Differentiate the FOCs with respect to a to get 

{ } 1
* 2 * 2 *( ) ( ( ), ) ( ( ), )f f

-
 = - 

xa xx
x a x a a x a a  

* * * *( ) ( ( ), ) ( ) ( ( ), )f f f =  + 
a x

a x a a x a x a a  

 Constrained optimization: boundary solutions of min ( ) s.t. nf Î Ìx x  . 

o The set of descent directions is { }* *:( ) ( ) 0n f= Î  ⋅ <x d x d . The tangent 

cone *( )x  is the set of directions we can move from *x  while staying in the 

feasible region. A necessary condition for *x  to be optimal is * *( ) ( )Ç = Æx x  . 

o If   is defined only by the equality constraints ( ) =h x 0 , then for any regular 

point (ie: point at which the gradients *( )
i

h x  are linearly independent): 

{ } ( )* * * *( ) ( :) ( ) ( )n= = Î  = = x x d h x d 0 h x      

Intuitively, any move in direction d will change h by *( )h x d … Thus 

( ) ( )** * * *( ) loca (l mini ) ( ) (mum & regula )r f ^  Î =  = x xx h x h x


    

[For Îd  , we need *( ) 0f ⋅ ³x d . But since Î - Îd d  , *( ) 0f ⋅ =x d ]. 

Thus, for any regular local optimum *x , * * *
unique

  s.t. ( ) ( )f$  + ⋅ =x h x 0l l . 

Example: min   s.t. 1, mG ⋅ = ⋅ =x x 1 x xm . FOCs are   

* *
1 2

2 0 1l l mG + + = ⋅ = =x 1 1 x xm m  

The first gives ( )* 11
1 22

l l-= - G +x 1 m . Feeding into the others gives a system of 

equations for l , whence * 2 2( )m m s am b g= +  = +  = + +x v wl h z .  

o Consider the addition of inequality constraints ( )£g x 0  to the definition of  . It 

can be shown that all constraints but the active ones at the optimum can be 

ignored. Thus, provided a point is regular (ie: { } { }* *( ) ( ) :  active
i j

h g j Èx x  is 

linearly independent), the KKT conditions provide conditions for optimality.  

o When using such conditions, it is important to check for non-regular points as 

well. Constraint qualifications can be weakened to requiring inequalities to be 

convex and equalities to be linear. 

 Subgradients – another way of expressing optimality conditions is as follows 



Convex Optimization Page 23

 

 
Daniel Guetta

{ } { }arg min ( ) : argmin ( ) ( )

( ) ( ) ( ) ( )

( ) s.t. ( )

( ) s.t. ( ) 0 

f f

f f

f

f

Î Î  Î +
é ù Î ¶ + = ¶ +¶ê úë û

 $ Î ¶ - Î ¶
 $ Î ¶ ⋅ - ³ " Î

x x x x x

0 x x x x

g x g x

g x g y x y

x


 









 


 

For the last step, note ( ) ( ) ( ) ( ) 0 ( ) Î ¶  ³ + ⋅ -  ³ ⋅ - " Îx y x g y x g y x yg
  

   . 

Chapter 6 – Approximation 

 The most basic approximation problem is min A -x b . Has solution 0 if ( )AÎb  . 

o Approximating b as closely as possible using columns of A. 

o Letting y = Ax + v (v is noise), and guessing x based on y, assuming noise small 

o 
( )

min
AÎ -

u
u b


; projecting b onto ( )A . 

o x are design variables, b is a target, Ax is the result. 

 Examples 

o 
2

2
min A -x b ; least square. Solution A A A=x b  . 

o 
2

min A
¥

-x b ; Chebyshev approx problem. Same as min  s.t. At t t- £ - £x b1 1  

o 
2

1
min A -x b ; Robust estimator. Same as min  s.t. A£⋅ - - £x1 t bt t . Slowest 

growing that is still convex. 

o 
1

min ( ) ( ) s.t. 
n

r r Af f+ = -+ r x b  is penalty function approximation. Measure 

of dislike of large residuals.  

 Least norm problems are min  s.t. A =x x b . Can be reformulated as 
0

min Z+x u , 

where x0 is a solution and the columns of Z form a basis for ( )A . 

 Regularization problems are bi-objective problems; ( )min ,A -x b x . Use 

min A g- +x b x  to trace out the tradeoff curve. 

o Example (Tikhonov regularization):  

( )2 2

2 2

2

min 2
A

A A I A
I

g g
g

æ ö æ ö÷ç ÷ç÷ ÷ç ç- + = + - + = -÷ ÷ç ç÷ ÷ç ÷ ç ÷ç÷ç è øè ø

b
x b x x x b x b b x

0
     

Solution is 
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 ( ) 1A A A
A A I A

I I I
g

g g g

-æ ö æ ö æ ö æ ö÷ ÷ ÷ç ç ç ÷ç÷ ÷ ÷ ÷ç ç ç ç= = +÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç÷ ÷ ÷ ç ÷ç÷ ÷ ÷


ç ç ç è øè ø è ø è ø

b
x x b

0

 

    

o Example (minimizing derivatives and curvature): We can replace our 

second objective ( x ) by Dx . We then get * 1( )A A D D Ag -= +x b   . Two 

useful examples of D are 

 D has 1s across its diagonal and a –1 to the left of each 1. Dx is then the 

vector of quantities xi + 1 – xi; the “discrete derivative” of x. 

 D has 2s across its diagonal, and 1s to its left and right. Dx is then the 

vector of quantities ( )1 1 1 1
[ ] [ ] 2

i i i i i i i
x x x x x x x+ - + -- - - = - + , 

approximately the curvature (second derivative) of x.  

o Example (LASSO): 
2

2 1
min A g- +x b x  can be written as QP  

 
2

2
min  s.t. A g ⋅ £ £- + -x b 1 y xy y   

 Stochastic Robust approximation: min A -
x

x b  with an uncertain A that has a 

probability distribution. Do min A -
x

x b  instead. If ( )
i i

A A p= = , this becomes 

min  s.t. 
i i

tA⋅ £-p t x b . For a 2-norm, this is an SOCP. For a 1-norm or ¥ -norm, 

this can be written as an LP. 
 

2

2
min A -x b  is actually tractable. We can write A A U= + , and we can then write 

the objective as 
22 1/2

2 2
min A P

æ ö÷ç - + ÷ç ÷çè ø
x b x , with ( )P U U=   . This is Tikhonov 

regularized least-squares. 

 Worst-case Robust approximation: We let A Î  , and we solve 

min sup
A

AÎ -
x

x b


. We consider several sets  : 

o Finite set or polyhedron: 
1

{ , , }
k

A A=  : min  s.  t. 
i

t A t i- £ "x b . For a 

polyhedron, try this out for the vertices. 

o Norm bound error: { | }A U U a= + £ , where the norm is a matrix-norm. 

Consider the approximation problem with the Euclidean norm and the max-

singular-value norm. Then sup
A

A UÎ - +x b x


 occurs when Ux is aligned with 

A -x b  and is as large as can be. Letting 
2 2

( ) /U a A A= - -x b x x b x  
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achieves that. Thus, our program is 
2 2

min A a- +
x

x b x . This is solvable as an 

SOCP: 
1 2 2 1 22

min  s.t. ,t at A t t+ - £ £xx b . 

o Uncertainty ellipsoids: Assume each row of A is in 

row 2
{ | 1}

i i i
P= + £A u u . Then sup

A
AÎ -x b


 can be found by individually 

maximizing { }row row 2
sup s ( ) 1up |

i i i i i
b b P⋅ = ⋅ - + £- ⋅

u
A x A x u x u . We do 

this by aligning u with 
i

P x  and get 
row row 2

sup
i i i i i

b b P⋅ - = ⋅ - +A x A x x . 

We then have 
, row 2 2

min sup min  s.t. 
A i ii i

A b tPÎ - = ⋅ - + £
x x t

x b t A x x


. 

We can get rid of the absolute value sign and put the problem in epigraph form 

to get an SOCP. 

Chapter 7 – Statistical Estimation 

 In a parametric estimation problem, we believe that a random variable of interest has a 

density that is part of a family ( )p
x
y  indexed by Î Wx . Given an observation y, the 

maximum-likelihood estimation problem is max log ( ) s.t. p Î W
x
y x . 

 Example: Consider a model i

i i
y v= ⋅ +a x , where yi are the observed quantities, x is to 

be estimated and the vi are IID noises with a density p. Then 
1

( ) ( )
m i

ii
p p y

=
= - ⋅x

y a x  

o Gaussian noise: 
2

22 1
2 2 2

( ) log(2 )m A
s

ps=- - -x x y . ML is least-squares. 

o Laplacian noise: | |/( ) / 2p e a a-= zz , and 
1

( ) log 2 /i
i

m ya a= - - ⋅ -x a x . 

This is 
1

norm-  approximation. 

o Uniform [–a, a] noise: ( ) log 2  if   i
i

m y iaa= - - ⋅ £ "x a x  and -¥  

otherwise. The ML estimate is then any x with  i
i

iy a- ⋅ £ "a x . 

 Example (logistic regression): We let yi be Bernoulli random variables with 

exp( )/ [1 exp( )]i i

i
p = ⋅ + + ⋅ +a u b a u b . Then 

, 1 0
log log(1 )

i i
i iy y

p p
= =

= + -å åa b
 . 

We can feed pi into this expression. 
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Chapter 8 – Geometric problems 

 In a classification problem, we are given two sets of points { }1 ,, Nx x  and { }1 ,, My y  

and wish to find a function f (within a family) s.t. ( ) 0 i if > "x  and ( ) 0 i if < "y . 

 Linear discrimination: We look for a function ( )f b= ⋅ -x a x  such that ( ) 1if ³x  

and ( ) 1if £-y  (where we have simply normalized the equations above) [ie: we seek a 

hyperplane that separates the two sets of points]. 
 

Interestingly, the strong alternative of this system of equations is  

, ,( , ) , ,i i
i i

l l³ ³ ¹ = ⋅ = ⋅å å0 0 0 x y 1 1l l l l ll      

By dividing by ⋅1 l , this becomes , 1,, 1, i i
i i

l l³ ⋅ = ⋅ = =å å0 1 1 x yl ll l   . This 

states that the convex hulls of x and y intersect. 

 Robust linear discrimination: There are lots of possible solutions to the problem 

above; we’d like to find the one that separates the points the most. Consider the planes 

{ }1b⋅ + =a z  and { }1b⋅ + = -a z . To find the distance between them, take a point 

with 1b⋅ + =a x  and solve 
2 2

2 2
2 Distance( ) 21 /b tt  =⋅ + + -=-  =a x a a a . So, 

we want to solve 1
2 2

min  s.t. ( ) , ( )  ii t i ff t i³ " £- "a x y . 
 

The dual function is 1
2 2

( , ) ( ) ( ) ( )g t t bé ù= + ⋅ + ⋅ + ⋅ - ⋅ + -ê úë ûa 1 Y X al n l n 1 n 1 l 1 n l  . 

We need ⋅ = ⋅1 n 1 l , in which case  1
2 2

( , ) ( ) ( )g t= + - + ⋅ + ⋅a Y X a 1l n n l l n 1  . 

We then note that by Cauchy-Schwarz, 
22

( ) £- -YY X a X an l n l     and so the 

dual is 1
2

max  s.t. , , ,⋅ + ⋅ ⋅ £= ³⋅ -1 X 0Yl 1 n 1 1 n l n ll n  . Normalizing l  and 

n  so that 1⋅ = ⋅ =1 l 1 n , we get min  s.t ,. , , 1t t£ ³ = ⋅- ⋅ =0Y X l m 1 ll 1n n  . 

This is the minimum distance between the convex hull of the points. 
 

Practically, we would minimize the program above using 
2

2
x . The dual is relatively 

simple to construct as a QP, and the primal solution can be recovered: = -a X Yl n   

 Approximate linear separation: If the points cannot be exactly separated, we might 

try to solve min  s.t. 1  , (1 ) , ,i i

i i
u i b vb i³ - "⋅ + ⋅ ⋅ ⋅ - £- - " ³- ³a y u 01 u 1 v a vx 0 . 

This is a heuristic to minimize the number of misclassifications. 
 

The support vector classifier minimizes a trade-off between ⋅ + ⋅1 u 1 v  and 
2

1
2 2
a . If 

,n M N , this can efficiently be solved by taking the dual. 
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 Non-linear classification: In the simplest case, we can use a linearly parameterized 

family of functions ( ) ( )f = ⋅z F zq . Our problem then reduces to solving the following 

system of linear inequalities: ( ) 1 i i³ "⋅F xq  and ( ) 1 i i£- "⋅F yq . 

Infinite-dimensional optimization 

 Hilbert spaces 

o Definition: A pre-Hilbert Space consists of a vector space V over   with an 

inner product , :V V´ x y  . Satisfies (a) , ,=x y y x  (b) 

, , ,+ = +x y z x y y z  (c) , ,l l=x y x y  for all l  (d) 0, ³x x , with 

equality iff x = 0. ,=x x x  is a norm, and inner product is continuous in 

both its arguments under that norm (Proof on Luenberger, pp49). 

 V = space of sequences that are square-summable. Define 

1
,

i ii
x y

¥

=
= åx y . [Finite by Cauchy Schwarz]. 

 
2
[ , ]bV a=   = space of measurable functions : [ , ]a b x   such that 

2
( )tx  is Lesbegue integrable. , ( ) ( ) d

b

a
t t t= òx y x y . 

 V = polynomials on [a, b] with , ( ) ( ) d
b

a
t t t= òx y x y  

o Definition: A Sequence { }n
x VÍ  is Cauchy iff 0

n m
- x x  as ,n m  ¥ , 

under the norm ,=y y y . 

o Definition: A Hilbert Space is a complete pre-Hilbert space; one in which every 

Cauchy sequences converges in the space. 

 Example of an incomplete space: Take [0,1]V C= , the space of 

continuous functions on [0,1]. Consider two norms 

[0,1]

1

* 0
max ( ) ( )  df f x f f x xÎ= = òx

 

Neither, it turns out, induce an inner product, so this it not a Hilbert 

Space. However: 

 V is complete under the first norm. Even though there is a 

sequence of functions fn that tend to a step function (which isn’t in 
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the space), the sequence isn’t Cauchy, because 1
2

step
n
f -  , 

since we are considering the point of maximum difference. 

 V is not complete under the starred norm, because 

*
step 0

n
f -  , so the sequence is Cauchy and leaves the space. 

Indeed, the area between fn and the step function shrinks to 0.  

o Definition (Orthogonality): We say x and y are orthogonal iff , 0=x y . We 

further define { }: , 0 M M^ Î= = "y y x x . By the joint continuity of the inner 

product, this is always closed. 

o Theorem (Projection): Let H be a Hilbert Space and K a closed and non-

empty convex subset of H. Then, for any HÎx , min
KÎ -

k
x k  has an optimal 

solution 
0

k  called the projection of x onto K. K¢ Îk  is equal to k0 if and only if 

K^¢- Îx k  (in other words, 0 , K¢ ¢- £ " Î-x k k k k ). 

Proof: Luenberger, pp. 51. 

o Theorem: If M is a closed subspace of H, then H M M ^= Å  and M M ^^= . As 

such, we call k0 in the projection theorem the orthogonal projection of x onto M, 

and we can write ( )0 0
= + -x k x k , where 

00
,( )M M ^Î - Îkk x . 

Proof: Luenberger, pp. 53. 

o Definition (Linear functional): A function :Vj    is a linear functional if 

( ) ( ) ( )j a b aj bj+ = +x y x y . 

 Continuous if ( ) ( )  :j j e d- £ " - £y x y x y . If j  is continuous at x0, 

it is continuous everywhere. Proof: 
0 0

( ) ( ) ( ) ( )j j j j-=- + -y x y x x x . 

 Bounded if s.t. ( )  M Mj$ £ "y y y . Define norm 

{ } 1
inf : (s( )p) uMMj j j

=
£= =

y
y y y  (last step by linearity). 

Notes: 

 If continuous, continuous at 0, ( ) 1 j d£ " £y y . As such, 

( ) ( )( )
d d d

j j d j d £= =
z z z

z z
z zz , since bit inside brackets has norm d . 
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 If bounded, ( )  Mj £ "z z z  and so ( )  :
M
ej e£ " £z z z . So 

continuous at 0, and therefore everywhere. 

 Example of a non-bounded linear functional: Let V be the space of 

all sequences with finitely many non-zero elements, with norm 

max
k k

x=x . Then ( ) max
k k

kxj =x  is unbounded because we can 

push the non-zero elements of x to infinity without changing the norm 

but making the functional grow to infinity.  

o Theorem (Riesz-Frechet): If ( )j x  is a continuous linear functional, then 

there exists a HÎz  such that ( ) ,j =x x z  

Proof: Let { }( ) 0:M j= =yy . Since the functional is continuous, M is closed. If 

M = H, set z = 0. Else, choose M ^Îg . 

( )

2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( ) 0

( )

,

, ,

0 , ,

Mj j

j j

j j

j j

j

j j j

j

- = - =  Î





-

=

-

= = -

=

x x

x x

x x x

x x x

x

x x

z

g g

g g

g

g

g

g g g

g

g g

g

 

Note also that by Cauchy-Schwarz, ( )j j£  =x z x z .  

o This means that Hilbert spaces are self-dual (see later), and that we can write 

( ) ,j j=x x . 

o Theorem (Special case of the Hahn-Banach Theorem): Let M HÍ  be a 

closed subspace and 
M

j  be a continuous linear functional on M. Then there 

exists a continuous linear functional j  on H such that ( ) ( ) 
M

Mj j= " Îx x x  

and 
M

j j= . 

Proof: Easy in the case of a Hilbert space. Since M is closed, it is also a Hilbert 

space, and so M$ Îm  such that ( ) ,
M

j =x x m . Then define ( ) ,j =x x m  for 

HÎx . By the CS inequality, 
M

j j= = m .  

 Banach Spaces & Their Duals 

o A Banach space is a normed, complete vector space with no inner product. 

 C[0,1] is the space of continuous function son [0,1], with 

10
max ( )

t
t£ £=f f  
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[As we showed above, the choice of this norm ensures completeness]. An 

example of a linear functional on this space is 

1 1

0 0
( ) ( ) d ( ) d ( ) TV( )t v t v t vj = £ £ò òf x x x  

Provided the total variation of v, TV( )v <¥ , where 

1 2All partitions 0 =1< 11
TV( ) sup ( ) ( )

n

n

t t i iit
v v t v t= < -=<= -å  

 { }:
p p

¥Î= <¥x x , where 

1/

1
or sup  if 

p
p

i i iip p
x x p

¥

=

æ ö÷ç= = = ¥÷ç ÷è øåx x  

 
1

0
[0,1] : ( ) d

p

p
t t

ì üï ïï ï= <¥í ýï ïï ïî þ
òx x , with 

 
1/

1

0
( ) d 1

p
p

p
t t p

æ ö÷ç= ÷ç ÷çè
<

ø
£ ¥òf f   

o Definition: We say { }* :  is continuous linear functional on V Vj j=  is the 

dual space of V, with norm { }
*

( )sup 1:j j= £x x . ( )*

*
,V  is always a 

Banach space. 

Proof: Want to show that { }* *
n

V" Íx  with * *

*
 ,

n m
n m M ee "- £ ³x x  

converges to a point * * *lim
n n

V¥= Îx x . First fix VÎx  and note that 

* ** * *

*

*( ) ( ) ( )( )
n mn m n m

- = - £ -x xx x x x x x x x  

As such, { }*( )
n

x x  is a Cauchy sequence in  . Since   is complete, 

* *( ) lim ( )
n n¥=x x x x  exists. Define *x  pointwise using this limit. Now 

 Linearity: By linearity of expectations, *x  is linear. 

 Continuity/boundedness: Fix m0 such that *
0

*  ,
n m

n m me "- £ ³x x . 

Then by the definition of *( )x x , * *( ) ( )
m

e£-x x x x x , and 

 ( )
0 0 0

* * * * *

*
( ) ( ) ( ) ( bou d) n ed

m m m
e+£ £ + -x x x x x x x x x x   

Examples 

 We have already shown (Riesz-Frechet Theorem) that Hilbert spaces are 

self-dual. 
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 Theorem: For (1, )p Î ¥ , *
p q
=  , where 1 1 1

p q
+ = . In other words 

1. For any 
q

Îy  , 
1

( )
i ii

y x
¥

=
= åf x  is a bounded linear functional 

on 
p
 . 

2. Every *
p

Îf   can be represented uniquely as 
1

( )
ii i

y x
¥

=
= åf x  

with 
q

Îy  . 

3. In both cases above, 
* q
=f y . 

Proof: We prove each step separately 

1. Suppose 
q

Îy  . Clearly, the proposed functional is linear. 

Furthermore, by Holder’s Inequality 
1

( )
i ii p q

y x
¥

=
£ £åx xf y . 

As such, the functional is also bounded, with 
q

£f y . 

2. We prove this in four steps. Let 
p

Îx   and *
p

Îf  . 

 Step 1 – approximate x using “basis” functions. Define 

“basis functions” i
p

Îe  , consisting of sequences which are 

identically 0 except for the ith component. We then have 

1

N i

N ii
x

=
= åx e x  

 Step 2 – find the image under f. In this case, let 

( )i iy Î= f e  . We then have, by linearity of f 

1 1
( )

N i i

N i ii i
f y x y x

¥

= =
= å åx  

By continuity of f, we have ( ) ( )
N

f fx x . Thus 

1
( ) i

ii
f y x

¥

=
=åx  

 Step 3 – show that the yi form a vector in 
q
 . Define the 

vector 
pN

Îy   as a “truncated y” series. 

( ) ( )/

sgn

0

q p
i

N i

i y i
y

i N

y N£
ìïïï= íï >ïïî

 

We then have 
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1/

1

/

1 1
( ) sgn( )

p
qN i

N ip

q p qN Ni i i i
N i i

y

f y y y y

=

= =

æ ö÷ç= ÷ç ÷çè ø

= =

å

å å

y

y

 

We know that 
*

(

*

)
( )

N

N

p
N p

f

N
f £  £

y

y
f y fy . Thus 

1 (1/ ) 1/

1 1 *

p q
q qN Ni i

i i
y y N

-

= =

æ ö æ ö÷ ÷ç ç=÷ ÷ç ç÷ ÷ç £ "çè ø è øå å f  

As such, 
q
£y f , and 

q
Îy  . 

3. We have shown that 
q
£y f  and 

q
³y f . Thus, 

q
=y f . 

 

 

 

 Theorem: *

1 ¥=  . 

Proof: Show this as above, and define the truncated vector 
N

y  as a 

containing sgn Ny  for i = N. 

 Theorem: For [1, )p Î ¥ , * [0,1] [0,1]
p q

L L= , where 1 1 1p q- -+ = . For 

every *
p

LÎf , there exists a 
q

LÎy  such that 
1

0
( ) ( ) ( ) dt t t= òf x x y  and 

* q
=f y . 

 Theorem: *[0,1] NBV[0,1]C = ; we will prove this later using the HB 

Theorem. 

 The Hahn Banach Theorem & Application to C[0,1] 

o Theorem (Hahn-Banach): Let p be a continuous seminorm (same as a norm, 

except for the fact it can be equal to 0 even when ¹x 0 ), M VÍ  be a closed 

subspace and :f M    be a linear functional such that (( ) )p Mf £ " Îx xx . 

Then, there exists a linear functional :F V    such that (( ) )p VF £ " Îx xx  

and ( ) ( ) F f MÎ= "x x x . 

Note: Consider setting 
*

( )p =x f x . Clearly, the condition of the theorem 

then applies, because 
*

( )f £x f x . The theorem then implies that 
* *
=F f . 
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The only reason we generalize p to a seminorm is to prove the geometric HB 

theorem (see later). 

Note 2: The idea it is possible to extend f over an entire space is not 

particularly revolutionary. The crux of the theorem is that this extension has 

bounded norm. In a way, the HB Theorem can be stated as “the optimization 

problem *
*

min  s.t. , ( )  
X

M X
Î

= " Î Ì
F

F x xF f x  has a global optimium, 

and its value is 
*

f ”. 

Note 3: Let X be a normed vector space. Then ,  s.t. ( )X" Î $ =x F F x F x . 

Define ( ) aa =f x x  on the subspace generated by x; this has norm unity. By 

the HB Theorem, we can extend this to F on X with norm unity. This satisfies 

the requirements for the point x. 

o Example/Theorem (dual space of C[0, 1], Riesz Representation 

Theorem): (In all that follows, use the usual norm, 
10

max ( )
t

t£ £ x , over C[0,1]) 

 Take any function v of bounded variation on [0,1]. Then : [0,1]C f   

defined by 
1

0
( ) ( ) d ( )t v t= òf x x  is a bounded linear functional in *[0,1]C . 

 Tale any bounded linear functional *[0,1]CÎf . Then there is a function v 

of bounded variation on [0, 1] such that 
1

0
( ) ( ) d ( )t v t= òf x x . 

 For the function defined in (2), TV( )v=f . 

 *[0,1] NBVC = . 

Proof: 

1. Clearly, any f defined in this fashion is linear. Furthermore, it is bounded: 

0 0 1

1

max( ) ( ) TV( ) T( d V() ( ) )
t

t vt t vv £ £= £ £òf x xx x  

2. Note that C[0,1] (space of continuous functions on [0,1]) is a subset of 

B[0,1], the space of bounded functions on [0,1]. Thus, by the HB Theorem 

* *[0,1] [0,1]  s.t. C BÎ  $ Î =f F F f  

Our proof then goes as follows: 
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 Step 1 – Approximate [0,1]CÎx  by discretisng it. Define a set of 

step functions { } [0,1) ](
s t s

t B
£

Î=u  . (Note these are not in C[0,1]; 

this is why it’s useful to move to the larger space). We can write 

( )
11

( ) ( ) ( ) ( ) [0,) ]( 1
i i

n

i t ti
Btpt t t t

-=
= -» Îåx z x u u  

Where p  is some partition of [0,1]. Hereafter, when we write 

“tends to”, we mean “as the partition gets arbitrarily fine”. 

 Step 2 – find the image under F. Let ( ) ( )
s

v s Î= F u   be the 

image of these “basis functions”. Since F is linear and the first 

term in the sum is a constant, we can write 

( )
1

11 0
) ( ) ( ) ( ) ( ) d )( (

n

i i ii
t v t v t t v tp

-=
= - Îå òz xF x   

 Step 3 – bridge the gap between B and C. By uniform continuity 

of x, the approximation pz  becomes arbitrarily good (using the 

max norm). Since F is also continuous using the max norm, this 

implies that ( ) ( ) ( )p  =F z F x f x . As such 

1

0
( ) ( ) d ( )t v t= òf x x  

 Step 4 – show v has bounded TV. By linearity of F, we have 

( )( )
( )

1

1

11 1

1*

* *

( ) ( )
i i

i i

n n

i i i t ti i

n

i t ti

v t v t u u

u u

e

e
-

-

-= =

=

- = -

-£

= =

å å
åF

F f

F

 

Where 1
i
e =   takes the absolute value into account, and the 

jump from line 2 to 3 follows since u are step functions. Taking a 

supremum over all partitions, we find 
*

TV( )v £ <¥f . 

Note, however, that the F produced by the HB Theorem is not 

necessarily unique. As such, nor is the function v. This 

theorem only states there exists such a v. 

3. From (1), it is clear that 
*

TV( )v£f . From (2, Step 4) it is clear that 

*
TV( )v³f . Thus, 

*
T= V( )vf . 
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4. Because if not non-uniqueness noted above, * BV[0,1][0,1]C ¹ . Indeed, the 

linear functional 1
2

( ) ( )f =x x , for example, we can represented using a v 

that is 0 on [0, ½), 1 on (½, 1] and takes any value at ½. As such, we 

define the space NBV[0,1] (normalized bounded variation), consisting of 

all functions of bounded variations that vanish at 0 and are right-

continuous. We then have *[0,1] NBV[0,1]C = , because every element in 

one set can be mapped to an element in the other.  

 Odds & Ends 

o We will sometimes abuse notation and write * *( ) ,=x x x x , for * *,V VÎ Îxx . 

In a Hilbert space, this is true, because V = V* (Riesz-Frechet). In a Banach 

space, it is convenient notation (see Hyperplanes section). 

o This means that by viewing x as fixed, *,x x  also defines a functional in **X  

(easy to show linear and bounded). Now, we have 

 * *, £x x x x  

 By Corollary 2 of H-B (below), * * **,  s.t. ,X XÎ Î =" $ x xx x xx  

As such, if we consider *,x x  as a functional on X**, its norm is 
X

x . We define 

the natural mapping **: X Xj   so that ( )j x  maps x to the functional it 

generates in X**; in other words, * *( ),, j= xx xx  but with **( )j Îx x . The 

mapping is linear, and, as we showed previously, norm-preserving; 

**
( )

X X
j = xx . But it  might not be onto – some elements in X** might not be 

representable by elements in X. If **X X= , X is called reflexive. All Hilbert 

spaces are reflexive, as are 
p
  and 

p
L  for (1, )p Î ¥ . 

o We have * *, £x x x x . In a Hilbert space, we have equality if and only if 

* a=x x . In a Banach space, we say ** XÎx  is aligned with XÎx  if 

* *, =x x x x . They are said to be orthogonal if *, 0=x x . Similarly, if 

S XÍ , we say { }* ** *: , 0 X S XS^ Î = " Í= Îx x xx . If *U XÍ , we say 

{ }** * *: , 0 U S X S XX^ ^ = Î == " ÍÇ Îx x xx . 
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o Theorem: If M XÍ , then ( )M M^ ^ = . 

Proof: Clearly, ( )M M^ ^Í . To show the converse, we’ll show that 

( )M M^ ^Ï  Ïx x . Define a linear functional f on the space spanned by M and 

x which vanishes on M so that ( )a a+ =f m x . It can be shown that <¥f , 

and so by the HB Theorem, we can extend it to some F which also vanishes on 

M. As such, M ^ÎF . However, ( ) , 01= ¹=F x F x , and so ( )M^ ^Ïx .  

 Minimum Norm Problems 

o Let us consider a vector XÎx . There are clearly two ways to take the norm of 

that vector – as an element of X or as an element of **X  (a functional on *X ). 

*

*

1
or max ,

=x
x x x  

It is clear these two should be equal, because * 1, £ ⋅x x x  (or, more 

intuitively, because the second norm finds the most x can yield under a 

functional of norm 1 – clearly, the answer is its norm). Let us now restrict 

ourselves to a subspace M of X. We can, again, define two norms 

*

*

*

1
inf or sup ,

M

M

MM ^

^

Î

Î

=
= - =

m x

x

x x m x x x  

The first simply consists of the minimum distance between x and M (as opposed 

to between x and 0). The second is the most x can yield under a functional of 

norm 1 that annihilates any element of M. Intuitively, the “remaining bit” that’s 

“not annihilated” is x – m; this is maximized when it is aligned with x* – at m0. 

So it makes sense that the two should be equal. 

o Theorem: Consider a normed linear space X and a subspace M therein. Let 

XÎx . Then 

* *

* *
* *

* *
01 1

inf max , max ,
M

M M

d
^ ^

=Î £

Î Î

æ ö÷ç ÷ç ÷ç= - = = - ÷ç ÷ç ÷÷ç ÷çè ø
m

x x

x x
x m x x x m x . 

Or, in our terminology above, 
M M^

=x x . The maximum on the right is 

achieved for some *

0
M ^Îx ; if the infemum on the left is achieved for some 

0
MÎm , then 

0
-x m  is aligned with *

0
x . 



Convex Optimization Page 37

 

 
Daniel Guetta

 

Intuitively, this is because at the optimal m, the residual x – m0 is aligned to 

some vector in M^ . As such, for that vector, *
0 0
,- = -x m x x m . For every 

other *x , it’ll be smaller than that. 
 

Pictorially, looking for the point on M that minimizes the norm is equivalent to 

looking for a point on M^  that is aligned with 
0

-x m . 

 

This also implies that a vector m0 is the minimum-norm projection if and only if 

there is a non-zero vector * M ^Îx  aligned with x – m0. 

o Theorem: Let M be a subspace in a real normed space X. Let ** XÎx . Then  

*

*

, 1

* *min sup ,
MM

d ^ Î £Î
= - =

xxm
x m x x  

where the minimum on the left is achieved for some *

0
M ^Îm . If the supremum 

is achieved for some 
0

MÎx , then * *

0
-x m  is aligned with x0. 

 

Because the minimum on the left is always achieved, it is always more desirable 

to express optimization problems in a dual space. 

o In many optimization problems, we seek to minimize a norm over an affine 

subset of a dual space rather than subspace. More specifically, subject to a set of 

linear constraints of the form *,
i i

c=y x . In that case, if *x  is some vector that 

satisfies these constraints, 

M^

0
-x m

x
0

m

M
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**

* * *

,

*

1

1

1

*

min min

sup ,

sup ,

sup

i i

i i

i i

M

M

i ia

a

a

^= Î

£
Î

£

£

= -

=

= å
= ⋅å

å
x

my x c

x

y

y

x x m

x x

y x

c a

 

Where M is the space generated by the yi. The last equality follows from the fact 

that *x  satisfies the equalities. Note that the optimal 
i i

a yå  is aligned with the 

optimal x*. 

 Applications 

o Example: Consider the problem of selecting the field current u(t) on [0,1] to 

drive a motor from initial conditions (0) (0) 0q q= =  to state (1) 1q = , (1) 0q =  

while minimizing 
10

max ( )
t

u t£ £ . Assume the motor is governed by 

( ) ( ) ( )t t u tq q+ =  . 

 First, we need to choose a space on which to optimize our problem. 

Choose, ( ) [0,1]u t L¥Î , which is the dual of 
1
[0,1]L . 

 First, note that we can treat the governing equation as a first-order 

equations and use an integrating factor to find 

( )
11

0

d

0
1

d

1 1

0

( ) ( )

(1) ( ) 

( )

d (1)

)

,

( t t

t t

t t

t
e t e u t

e

e t e

u t t

u t

e uq q

q q

- -

é ù =ê úë û

 =

=

 =

ò
ò

 


 

(Here et – 1 is considered as a function in L1 and 
1

1

0
( ) dte u t t-ò  as some 

functional in *

1
L  on that function). 

 

We can also integrate the governing equation directly to get 

1 1

0 0
(1) (0) (1) (0) ( ) d (1) ( ) d (1)u t t u t tq q q q q q- + - = = -ò ò    

Feeding in the results of the previous equation 

( )
1

1 1

0
((1) 1 ( ) 1) 1 ,dt te u t t e uqq - - = -= -ò  

 As such, our problem boils down to minimizing the norm of u subject to 

1, 0te u- =  and 11 , 1te u-- = . This is precisely the situation 
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considered at the end of the previous section, and so this optimization 

problem is equivalent to 

( ) ( )1 1
1 2

21 11
max 1 0

t ta e a e
a a

- -- £+
⋅ + ⋅  

Where the norm is taken in L1 (the primal space). As such, we want to 

maximize a2 subject to ( )
1

1
1 2 20

1dta a e a t-- + £ò . 

 Once we have found the optimal value of a2, we can find u by 

characterizing the alignment between 
1

L  and L¥ . For 
1

x LÎ  and u L¥Î  

to be aligned, we require 

[0

1 1

*0 0 ,1]
, ( ) ( ) d ( )  d max ( )

t
x u x t u t t x u x t t u tÎ= = = ⋅ò ò  

For this to be true, it is clear that u can only take two values (+M) and 

that it must have the same sign as x at any given value of t. 

 Finally, consider that in this case, x is ( ) 1

1 2 2

ta a e a-- + . Clearly, it 

changes sign at most once. And so u(t) must be equal to + M with a 

single change in sign. 

o Example: Consider selecting a thrust program u(t) for a vertically ascending 

rocket subject only to gravity and thrust in order to reach a given altitude (say 

1) with minimum fuel expenditure 
0

( ) d
T

u t tò . Assume (0) (0) 0x x= = , unit 

mass and unit gravity. The equation of motion is ( ) ( ) 1x t u t= - . 

 We might originally regard this problem in L1, but this is not a dual 

space. Instead, consider it in NBV[0,1], and associate with every u a 

[0,1]v NBVÎ  so that ( )  d ( )u t t dv t= . 

 The time at which the rocket needs to reach an altitude of 1. We denote 

this by an unknown T and then optimize over this parameter. Integrating 

the equation of motion 

0 0
( ) (0) ( ) d ( ) ( ) d

t t

x t x u s s t x t u s s t= - =- -ò ò    

Integrating again, by parts 
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2

0 0

2

0 0
0

2

0 0
2

0

2

( ) ( ) d  d
2

( ) ( ) d ( ) d
2

( ) ( ) d ( ) d
2

( ) ( ) d ( )
2

, ( )
2

T t

T
t T

T T

T

T
x T u s s t

T
x T t u s s tu t t

T
x T T u s s tu t t

T
T t u s s x T

T
T t v x T

= -

é ù
= - -ê ú

ê úë û

= - -

- = +

- = +

ò ò

ò ò

ò ò

ò

 

Where v is the function in NBV[0,1] associated with u, as described 

above. 

 Our problem is then a minimum norm problem subject to a single linear 

constraint. We want x(T) = 1, and using our theorem, as we did above 

( )21
2

21
( 1) 2, 1

min max 1
T t aT t v T

v a T
-- = + £

é ù= +ê úë û
 

This is a one-dimensional problem. The norm is in C[0,1], the space to 

which NBV is dual. As such 
[0,1]

( ) max ( )
t

T t a T t a T aÎ- = - = , and the 

optimum occurs at a = 1/T. We then have 21
2

1 1
2, 1

min
TT t v T

v T
- = +

= + . 

Differentiating this with respect to T, we find that the minimum fuel 

expenditure of 2  is achieved at 2T = . 

 To find the optimal u, note that the optimal v must be aligned to 

( )T t a- . As we discussed above when characterizing alignment of C and 

NBV, this means that v must be a step function at t = 0, rising to 2  at 

t = 0, and as such, u must be an impulse (delta function) at t = 0. 

 Hyperplanes & the Geometric Hahn-Banach Theorem 

o Definition: A hyperplane H of a normed linear space X is a maximal proper 

affine set. ie: if H AÍ  and A is affine, then either A = H or A = X. 

o Theorem: A set H is a hyperplane if and only if it is of the form 

{ }: ( )X f cÎ =x x  where f is a non-zero linear functional, and c is a scalar. 

Proof: 

 If: Let 
0

H M= +x , where M is a linear subspace 
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 If 
0

MÏx , then ( )0 0
+ span ,X M= x x  by the maximality 

property of H, since this set is bigger than M. Thus, 

( )0
span ,X M= x . We can therefore write any XÎx  as 

0
a= +x x m , with MÎm . Define 

0
( )f a a+ =x m . Then 

{ }: ( ) 1H f= =x x . 

 If 
0

MÎx , then H M= . Simply pick 
0

M¢ Ïx , apply the above 

and get { }: ( ) 0H f= =x x . 

 Only if: Suppose ¹f 0  and let { }: ( ) 0M = =x f x . Clearly, it is a 

linear subspace. Furthermore, there exists x0 such that 
0

( ) 1f =x . As 

such, 
0

( )f M "- Îx x x x , and so { }0
( ) :X f MÎ= +v x x v . So we only 

require one extra vector (x0) to expand M into the whole subspace. So M 

is a maximal subspace. Thus { } { }0
: ( )H c c M= = = = +x f x x x  is a 

hyperplane.  

Important note: A hyperplane is only closed if f is linear and continuous. 

o Theorem (Geometric Hahn-Banach): Let K be a convex set having a 

nonempty interior in a real normed linear vector space X. Suppose V is an affine 

set in X containing no interior points of K. Then there is a closed hyperplane in 

X containing V but containing to interior point of K. In other words, there is an 

element ** XÎx  and a constant c such that *, c=v x  for all VÎv  and 

*, c<k x  for all KÎk .  

o We will abuse notation and write * *( ) ,=x x x x , for * *,V VÎ Îxx . 

 In Hilbert Spaces, this is actually true thanks to Riesz-Frechet. 

 It allows to represent all hyperplanes as { }: , 0=x x a . 

Mathematical background 

 Vector spaces &  Topology 

o Inner products 
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 Cauchy-Schwarz inequality: 
2

, ,, £ ⋅x xy yx y , with equality if and 

only if l=x y , or either vectors are 0. 

Proof: If y = 0, the result is simple. Else 

2, , ,0 2 ,l l l l£ - - = - +x y x y x x x y y y  

Set , / ,l = x y y y  to get the result.  

 Parallelogram Law: 
2 2 2 2

2 2+ + - = +x y x y x y  (prove by 

extending norms as inner products). 

 Induced norm ,x x  satisfies triangle (expand 
2

+x y , and use C-S). 

 For matrices, the standard inner product is , tr( )X Y X Y=  . Equivalent 

to multiplying every element in X with the corresponding element in Y. 

The induced norm is the Frobenius Norm, 
F

X . 

o Norms 

 A norm has the properties (a) 0³x  (b) 0 == x x 0  (c) 

a a=x x  (d) £+ +x y x y . A seminorm might not satisfy (b). 

 Common norms: ( )1/| |
p

p
ip

x= åx . For nP ++Î  , 
P

P=x x x  

(the unit ball is an ellipsoid). { }1
max || |, |

n
x x

¥
=x  . 

 The dual norm of a norm  is { }
*

sup 1:= £⋅
x

z z x x . It is the 

support function of the unit ball of the norm. Note that 
*

£⋅x y x y  

 For (1, )p Î ¥ , the dual norm of 
p
 is 

q
 , where 1 1 1

p q
+ = .  

 
**

=  (not true in infinite dimensional spaces). 

o Open/closed sets 

 { }) :(
r

N X rÎ -= <y x yx  is a neighborhood of x (“open ball”) 

 intÎx   if  s.t. ( )
r

r N$ Ìx  . open int =   . 

 cl Îx   if for every ( )
r

N x , ( )
r

N ¹Ç Æx  . closed cl  =    
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 The union of open sets is open. The intersection of a finite number of 

open sets is open. The intersection of closed sets is closed. The union of a 

finite number of closed sets is closed. 

 The set of reals is both closed and open. 

 Theorem: { }1 ) dom ( : ( )f ff - = Î Îx x  . If dom f is open/closed and 

  is open/closed, then 1( )f -   is also open/closed. 

o nÌ   is (sequentially) compact if for every sequence { }k
Íx   there exists a 

subsequence { }
ik

x  converging to an element Îx  . [Another definition, 

equivalent in metric spaces, is that every open over must have a finite sub-cover]. 

 Theorem (Heine-Borel): in finite dimensional spaces, a set is compact if 

and only if it is closed and bounded. 

 Theorems: A closed subset of a compact set is compact. The intersection 

of a sequence of non-empty, nested compact sets is non-empty. 

o The indicator function of a set ( )I x


 is equal to 0 if Îx   and ¥  otherwise. 

o A subspace of a vector space is a subset of the vector space that contains the 0 

vector and that satisfies closure under addition and scalar multiplication. 

 Analysis & Calculus 

o A function f is coercive over   if for every sequence { }
k

Ìx   with 
k

 ¥x , 

we have lim ( )
k k

f¥ = ¥x . 

o Second-order Taylor expansion: if f is twice-continuously differentiable over 

( )
r

N x , then  ( )
r

N" Î 0d , 
221

2
( ) ( ) ( )( ) ( ) ff f f o +  ++ = + x dx d d x dx d   

o For a vector-value function F, ( ) ( ) /
j iij

F xé ù = ¶ ¶ê úë ûF x x . 

o The chain rule states that ( ( )) ( ) ( ( ))é ù =  ê úë ûg f x f x g f x . 

 Linear algebra 

o The range or image of m nA ´Î  , ( )A  is the set of all vectors that can be 

written as Ax. The nullspace or kernel ( )A  is the set of vectors than satisfy Ax 

= 0. Note that ( ) ( ) nA A
^
Å =   ; in other words ( ) ( )A Aé ù= ê úë û


  . This last 

statement means that 0  with AA  ⋅ = " == z y yz y 0x  . 
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o A real symmetric matrix n n nA ´Î Í   can be factored as A QQ= L  , where 

1
diag ,( , )

n
l lL =  . Note that det

i
A l= , tr

i
A l= å , 

2
max

i
A l=  and 

2

iF
A l= å . 

o n
++  is the set of symmetric, positive definite matrix; all their eigenvectors are 

positive, and , 0 0nA A++Î ¹  >x x x . 

o Note that 
max/mi 0n

( ) sup/ inf x Ax
x x x

Al ¹=



. As such, 

xmin ma
( )( ) x A xx xA A xx ll £ £    

o Suppose m nA ´Î   with rank r. Then we can factor A U V= S  , where 

,m r n rVU ´ ´Î Î   are two orthogonal matrices and 
1

diag ,( , )
r

s sS =  . Writing 

2A A V U U V V V= S S = S     we see that these singular values are the square 

root of the non-zero eigenvalues of A A , and the right singular vectors V are the 

eigenvectors of A A . Similarly, U contains the eigenvectors of AA . We have 

2 2 2
max , 0 0

( ) sup supx Ay y A Ay

x y yx y y
As ¹ ¹= =

  

. In other words, 
max2

( )A As= . We 

denote 1
max min2 2

cond( ) ( )/ ( )A A A A As s-= = . 

o The pseudo-inverse is 1†A V U-= S  . If A is square and non-singular, then 

1†A A-= . It is useful for the following reasons 

 †A=x b  is the minimum-Euclidean norm solution of 
2

2
min A -x b . 

 The optimal value of 1
2

min P + ⋅ +
x

x x q x r  for nP Î   can be expressed 

as †1
2

P- +q q r  if 0P   and ( )PÎq  , and -¥  otherwise. 

Consider a matrix n
A B

X
B C

é ù
ê ú= ê ú
ê úë û

Î  , with kA Î  . If det 0A ¹ , then the matrix 

Then 1S C B A B-= -   is the Schur complement of A in X. det det detX A S= . 

 Let 0A  and consider min min 2
u

X A B C= + +
u
x x u u v u v v     , 

where é ù= ê úë ûx u v . This is a quadratic with solution 1A B-= -u v  and 

optimal value Sv v . Thus 

 0X     0 and 0A S   

 If 0A , then 0 0X S   
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 Consider 
A B

B C

é ù é ù é ù
ê ú ê ú ê ú=ê ú ê ú ê ú
ê ú ê ú ê úë û ë ûë û

x u

y v  with det 0A ¹ . Using the top equation to 

eliminate x and feeding it into the bottom block, we get 

( )1 1y S v B A u- -= -  . Substituting this back to find x, we get 

1
1 1 1 1 1 1

1 1 1

A B A A BS B A A BS

B C S B A S

- - - - - - -

- - -

é ùé ù + -ê úê ú = ê úê ú -ê úê úë û ë û



 

 


