
Convex Optimization

Review Session 7 & 8

Question 1 (Theory of Banach Spaces)

In this �question�, we'll be discussing Banach spaces.

Recall that in our discussions of Hilbert spaces in previous review

sessions, many of the theorems we proved were adorned with a

*. These theorems are identical in Banach space and will not be

repeated here.

Solution

Having considered Hilbert spaces, we now move on to Banach

spaces. Banach spaces are complete vector spaces together with a

norm. In other words, the only thing that distinguishes Banach

spaces from Hilbert spaces is that the latter are equipped with an

inner product, whereas the former are only equipped with a norm.

Let's begin by listing some common Banach spaces. . .

Theorem 1. (Common Banach Spaces)

The following are Banach spaces

• Any Hilbert space.

• `p, the set of sequences x such that
∑

i |xi|p < ∞, with

norm ‖x‖ = (
∑

i |xi|p)
1/p.

• Lp, the set of functions x such that
∫
|x(t)|pdt <∞, with

norm ‖x‖ =
(∫
|x(t)|p

)1/p
• C[a, b], the set of continuous functions on [a, b], with norm

‖x‖ = supt∈[a,b] |x(t)|.

• c, the set of sequences with a limit that exists, with norm

‖x‖ = supk |xk|.

• c0, the set of sequences with limit 0, with the same norm

as c.

• NBV[a, b], the set of functions of bounded total variation

on [a, b], with value 0 at a, with norm equal to the total

variation.

The total variation of a function x is given by

TV(x) = sup
paritions

a=t1≤···≤tn=b

n∑
t=1

|x(ti) + x(ti−1)| =
∫ b

a
|dx(t)|
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As we will see, this seemingly small di�erence has an enormous

impact. In particular, it means that the Riesz-Frechet Theorem

no longer holds (because it make extensive use of inner products)

� linear functionals in Banach spaces cannot be represented as an

element in the space. This leads us to our �rst topic. . .

Dual Spaces

De�nition 1. (Dual Space) The dual space of a Banach space

X, denoted X∗, is the set of all bounded linear functionals on

X.

As we discussed when we de�ned linear functionals, the form of

any element f ∈ X∗ is

‖f‖∗ = sup
‖x‖≤1

|f(x)

It should be immediately apparent that the dual of a Hilbert space

is the space itself, as a result of the Riesz-Frechet Theorem. Unfor-

tunately, we no longer have recourse to this theorem in the more

general case, and this is where complications begin.

Theorem 2. (Dual of Common Spaces) Given some p, let
q be such that 1

p + 1
q = 1 (in other words, q = p(p− 1)). Then

• The dual of `p, for 1 ≤ p <∞, is `q. In other words, any

bounded linear functional f : `p → R is representable in

the form

f(x) =

∞∑
i=1

ηixi

where η ∈ `q. Furthermore, every element of `q de�nes a
bounded linear functional on `p in this way, and we have

‖f‖∗p = ‖η‖q

(Note that the dual of `∞ is not `1).

• The dual of Lp[0, 1], for 1 ≤ p < ∞, is Lq[0, 1]. In other

words, any bounded linear functions f : Lp → R is repre-

sentable in the form

f(x) =

∫ 1

0
x(t)y(t)dt

where y ∈ Lq[0, 1]. Furthermore, every element of Lq[0, 1]
de�nes a linear functional on Lp[0, 1] in this way, and

‖f‖∗p = ‖y‖q
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(Again, the dual of L∞ is not L1).

• The dual of C[a, b], the space of continuous functions on

[a, b], is NBV[a, b].

In other words, any bounded linear functional f :
C[a, b]→ R is representable in the form

f(x) =

∫ b

a
x(t) dv(t)

such that v ∈ NBV[a, b]. Furthermore, every element of

NBV[a, b] de�nes a bounded linear functional in this way

and

‖f‖∗C[a,b] = ‖v‖NBV[a,b]

(We will consider the duals of c0 and c in exercises.)

Proof. We will carry out the proof for `p � the proof for Lp is

similar. We'll show this in two steps

`q ⊆ `∗p Consider any element η ∈ `q, and consider the functional

f(x) =

∞∑
i=1

ηixi

Clearly, the resulting linear is functional. Furthermore, by

Holder's Inequality,

|f(x)| ≤
∞∑
i=1

|ηixi| ≤ ‖x‖p‖η‖q

and this inequality is tight. Thus,

‖f‖∗p = ‖η‖q

`∗p ⊆ `q Consider some linear functional f ∈ `∗p, and consider

some x ∈ `p. We then carry out the following steps

Truncate x First, de�ne `basis functions' e(i) ∈ `p, consist-
ing of sequences which are identically 0 except for the

ith component, which is equal to 1. We then de�ne the

approximation

x(N) =

n∑
i=1

xie
(i) → x
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Apply f to the truncated vectors Let ηi = f(e(i)) ∈ C.
Then, by linearity of f , we have that

f(x(N)) =

N∑
i=1

ηixi →
∞∑
i=1

yixi

By continuity of f , we have that

f(xN ) =

∞∑
i=1

ηixi

Show that η is a vector in `q De�ne η(N) by

(η(N))i =

{
|ηi|q/psign(ηi) i ≤ N

0 i > N

(This vectors is both in `p and `q). Now, consider that
(bearing in mind that 1

p + 1
q = 1),

‖η(N)‖p =

(
N∑
i=1

|ηi|q
)1/p

f(η(N)) =
n∑
i=1

|ηi|q/psign(ηi)ηi =
n∑
i=1

|ηi|q

Finally, consider that by the de�nition of the dual norm,

|f(η(N))| ≤ ‖f‖∗p‖η(N)‖p, and so

|f(η(N))|
‖η(N)‖

≤ ‖f‖∗p <∞ ∀N

Combining these three results, we �nd that

‖η‖q <∞ ∀N

As such, the sequence
{
η(i)

}
is in `q. And since the

space is complete and η(i) → η, we have that η ∈ `q.

(For p = 1 and q =∞, the proof is similar but slightly di�erent �

see Luenberger pp 108).

Proof. The proof for C[a, b] requires the Hahn-Banach Theorem.

Feel free to skip it and to return to it later. As ever, let's show

this in two steps:

NBV[a, b] ⊆ C[a, b]∗ Consider any element v ∈ NBV[a, b]. Clearly,

any functional f de�ned as in the question is linear. Further-

more, it is bounded, because

f(x) =

∫ b

a
x(t) dv(t)

≤ max
t∈[a,b]

|x(t)|TV(v)

≤ ‖x‖TV(v)
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Choosing a constant x reveals that this inequality is tight,

and so we do indeed �nd that

‖f‖∗ = ‖v‖NBV[a,b]

C[a, b]∗ ⊆ NBV[a, b] Consider some bounded linear functional f ∈
C[a, b]∗. Since C[a, b] is a subspace of B[a, b] (the space of

bounded functions in [0, 1]), the Hahn-Banach Theorem im-

plies that there is some functional F ∈ B[a, b]∗ such that

‖F ‖∗ = ‖f‖∗. Now, carry out the following steps

Approximate x by discretizing it. De�ne a set of step

functions u(s)(t) = It≤s ∈ B[0, 1]. Then, note that

x(τ) ≈ zπ(τ) =

n∑
i=1

x(ti)
(
u(ti)(τ)− y(ti−1)(τ)

)
∈ B[0, 1]

where π is some partition of [a, b].

Find the image of each approximand . It will now be-

come apparent why we needed to us the HB Theorem

to �nd an extension of f . Let v(s) = F (u(s)) be the

image of these `basis functions'. Since F is linear, we

can write

F (zπ) =
n∑
i=1

x(ti) (v(ti)− v(ti−1))→
∫ 1

0
x(t) dv(t)

Bridge the gap between B and C . By uniform conti-

nuity of x, the approximation zπ becomes arbitrarily

good (using the max norm). Since F is continuous,

this means that

F (zπ)→ F (x) = f(x)

and so

f(x) =

∫ b

a
x(t) dv(t)

Show that v has bounded TV . Consider that (we let

εi = ±1, to take care of the absolute value)

TV(v) =

n∑
i=1

|v(ti)− v(ti−1)|

= F

(
n∑
i=1

εi[u
ti − uti−1 ]

)

≤ ‖F ‖∗
∥∥∥∥∥

n∑
i=1

εi[u
ti − uti−1 ]

∥∥∥∥∥
= ‖F ‖∗ = ‖f‖∗ <∞
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(where the last step follows because u are step functions

and so their maximum norms will be 1.)

The Hahn-Banach Theorem

It turns out that the Hahn-Banach Theorem, which we proved for

Hilbert spaces, also holds for Banach spaces, in both its forms. We

re-state the theorem here, for convenience.

Theorem 3. (Hahn-Banach)

Let M ⊆ H be a closed subspace of a Banach space X, and let

p be a seminorm on X.

Let φ be a continuous linear functional onM satisfying φ(m) ≤
p(m) for all m ∈ M . Then there exists a continuous linear

extension of φ on X, Φ, such that Φ(x) ≤ p(x) for all x ∈ X.

Proof. See Luenberger pp. 111.

Alignment & Orthogonality

In a nutshell, the reminder of this section will be devoted to getting

around the di�culties caused by a lack of inner product, and to

derive a set of results analogous to those we derived for Hilbert

space.

We begin by introducing some rather clever notation that will

obscure the lack of an inner product in Banach space. Consider

a Banach space X, an element x ∈ X, and a linear functional

f ∈ X∗. We will write

f(x) = 〈x,f〉

In some sense, this is nonsense, because Banach spaces are not

equipped with inner products. However, as a point of notation,

this will turn out to be extremely useful. This is particularly true

in light of the following theorem

Theorem 4. Given a Banach space X and for a �xed x ∈ X,

the quantity 〈x,f〉 as a function of f ∈ X∗ de�nes a linear

functional on X∗.

Furthermore,

〈x,f〉 ≤ ‖x‖X‖f‖∗X
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and there is some functional f ∈ X∗ (not necessarily unique)

such that this holds with equality. Any such vector is said to

be aligned with x.

Proof. First, consider f1 ∈ X∗ and f2 ∈ X∗. We have that

〈x, αf1 + βf2〉 = αf(x) + βf2(x) = α〈x,f1〉+ β〈x,f2〉

So the functional is linear.

Furthermore,

〈x,f〉 = f(x) ≤ ‖x‖X‖f‖∗X

so the linear functional is bounded.

Finally, to show that there is a f ∈ X∗ such that this holds in

equality, consider the linear functional f(x) = ‖x‖X de�ned over

the subspace {y : y = αx}. This is clearly bounded with norm

unity. By the Hahn-Banach Theorem (with seminorm p(x) =
‖x‖), we can �nd an extension of this functional that also has

norm unity.

Note that the discussion above implies that X ⊆ X∗∗. For certain
spaces, X = X∗∗ � these spaces are called re�exive.

We now take the `inner product' analogy even further

De�nition 2. (Alignment & Orthogonality) Two vectors

x ∈ X and x∗ ∈ X∗ are said to be orthogonal if 〈x,x∗〉 = 0.

The vectors are said to be aligned if 〈x,x∗〉 = ‖x‖‖x‖∗.

Example

Let x ∈ X = C[a, b], and let Γ be the following set of

points

Γ =

{
t : |x(t)| = ‖x‖ = sup

t∈[a,b]
|x(t)|

}

Now, consider a bounded linear functional x∗ ∈ C[a, b]∗.
We proved above that it can be expressed as

〈x∗,x〉 = x∗(x) =

∫ b

a
x(t) dv(t)

x and x∗ are aligned if and only if

〈x∗,x〉 = ‖x‖‖x∗‖∗
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or, more speci�cally,∫ b

a
x(t) dv(t) =

[
sup
t∈[a,b]

|x(t)|

]
TV(v(t))

This makes it pretty clear that x∗ is aligned with x
only if

• It only varies on Γ.

• It is non-decreasing at t if x(t) > 0.

• It is non-increasing at t if x(t) < 0.

Minimum-norm problems

Consider a vector x in some normed linear space X. Because

X ⊆ X∗∗ (see above), there are two ways to take the norm of

that vector; either by considering it as an element of X, or by

considering it as an element of X∗∗. Furthermore, by Theorem 4,

both norms gives the same result. In other words,

‖x‖ = max
‖f‖∗≤1

〈x,f〉

The following theorem is a very similar result, but instead of �nd-

ing the norm of x (ie: its distance from 0), it concerns the distance

of x from a certain subspace M .

Theorem 5. (Duality)

Let x be an element in a real normed linear space X and d
denote its distance from the subspace M . Then

d = inf
m∈M

‖x−m‖ = max
‖f‖∗≤1

f∈M⊥

〈x,f〉

where the maximum on the right is achieved for some f (0) ∈
M⊥. If the infemum on the left is achieved, for somem(0) ∈M ,

then f (0) is aligned with x−m(0).

Proof. See Luenberger pp.

We'll (try) to understand this problem in intuitively on the chalk-

board in our review session.

As a companion to this theorem, we have
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Theorem 6. Let M be a subspace in a real normed space X.

Consider some f ∈ X∗. Then

d = min
φ∈M⊥

‖f − φ‖∗ = sup
x∈M
‖x‖≤1

〈x,f〉

where the minimum on the left is achieved for some φ(0) ∈M⊥.
If the supremum on the right is achieved for some x(0) ∈ M ,

then f − φ(0) is aligned with x(0).

This theorem guarantees the existence of a solution to the mini-

mum norm problem if the problem is formulated in the dual of

a normed space. This simply re�ects the fact that Hahn-Banach

Theorem establishes the existence of certain linear functionals, not

of certain vectors.

This establishes a general rule � which we will be using in appli-

cations � that minimum norm problems must be formulated in a

dual space if one is to guarantee the existence of solutions.

Like in Hilbert space, many optimization problems in Banach

spaces are not concerned with �nding the minimum distance be-

tween a point and a subspace, but instead seek the point of mini-

mum norm in an a�ne set. The following theorem concerns such

problems

Theorem 7. Consider a set of vectors
{
y(1), · · · ,y(N)

}
and a

set of constants {c1, · · · , cN} (collected together into a vector

c). Then

min
f∈X∗:〈y(i),f〉=ci

‖f‖∗ = sup
a:‖

∑
aiy(i)‖≤1

c · a

Furthermore, the optimal f on the LHS is aligned with the

optimal
∑
aiy

(i) on the RHS.

Proof. As a �rst step, let's convert this problem to a standard

minimum-norm problem. Let M denote the space generated by

the y(i), and let f̄ be some vector in the a�ne space (ie: satisfying

all the constraints). Then

min
f∈X∗:〈y(i),f〉=ci

‖f‖∗ = min
φ̄∈(f̄+M⊥)

‖φ̄‖∗

= min
φ∈M⊥

‖f̄ − φ‖∗

Using Theorem 6, we �nd that this is equivalent to

sup
x∈M
‖x‖≤1

〈f̄ ,x〉
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Since M is the subspace generated by the y(i), we can write x =∑
aiy

(i), and this becomes

sup
‖
∑
aiy(i)‖≤1

〈f̄ ,
∑

aiy
(i)〉

And �nally, using linearity and since by de�nition of f̄ we have

that 〈f̄ ,y(i) = ci for all i, this becomes

sup
‖
∑
aiy(i)‖≤1

c · a

As required.

Hyperplanes & The Geometric Hahn-Banach Theo-

rem

We are now ready to look at the geometric form of the Hahn-

Banach Theorem.

Theorem 8. (Geometric Hahn-Banach*)

Let K be a convex set with non-empty interior in a Hilbert

space H. Suppose V is an a�ne set in X (which could be a

single point x0) that contains no interior points of K . Then

there is a closed hyperplane in H containing V but containing

no interior point of K .

In other words, there exists an element h∗ ∈ H such that

〈v,h∗〉 = c ∀v ∈ V

〈k,h∗〉 < c ∀k ∈ int(K )

Proof. Given the extension form of the Hahn-Banach Theorem,

the proof is the same as it was for Hilbert spaces.

� � �

Question 2 (A Control Problem)

Consider an electric motor governed by the equation

θ̈(t) + θ̇(t) = u(t)

were u(t) is a driving current. Suppose that at t = 0, the motor

starts at rest, and at θ = 0, and that we want to apply some

driving current so that at t = 1, the motor ends up at rest at

θ = 1.
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Show that the driving function u(t) that minimizes the maximum

current applied must be `bang-bang' � ie: show that the function

only takes values ±M for someM , and changes signs at most once.

Solution

We �rst need to choose a space in which to carry out this opti-

mization problem. We might be tempted to choose C[0, 1], which
has the correct norm. Unfortunately, this wouldn't guarantee a

solution, because C[0, 1] is not the dual of any other space. Thus,

we choose L∞[0, 1] (with norm ‖x‖ = maxt∈[0,1] x(t)), which is the

dual of L1[0, 1] (with norm ‖x‖ =
∫ 1

0 |x(t)| dt). This space still

has the correct norm, but also has the advantage of being a dual

space.

Having said that, let's massage our di�erential equation so as to

express our constraints in a more palatable way. First, multiply

throughout by the integrating factor et

θ̈(t)et + θ̇(t)et = etu(t)

Simplifying
d

dt

(
etθ̇(t)

)
= etu(t)

Integrating with respect to t[
etθ̇(t)

]1

0
=

∫ 1

0
etu(t) dt

Simplifying, and recalling that θ̇(0) = 0, we �nd that

θ̇(1) =

∫ 1

0
et−1u(t) dt

Consider, however, that since et−1 ∈ L1[0, 1], the dual space of

L∞[0, 1] in which u resides, the integral above de�nes a linear

functional on L∞[0, 1]. Thus, we can use inner product notation

to write

θ̇(1) = 〈et−1, u〉

We can also integrate the governing equation directly to get

[θ̇(t)]10 + [θ(t)]10 =

∫ 1

0
u(t) dt

Using the initial conditions, we �nd that

θ(1) =

∫ 1

0
u(t) dt− θ̇(1)
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Finally, using our boxed result above (and similar logic to deal

with the integral), we �nd that

θ(1) = 〈1− et−1, u〉

Thus, our boundary conditions become

〈et−1, u〉 = 0

〈1− et−1, u〉 = 1

and we need to minimize the norm of u subject to those con-

straints. This problem is precisely in the form we discussed in the-

orem 7 � �nding the vector of minimum norm in an a�ne space

� and using the results there, its optimal solution is equal to the

optimal solution of

max
‖a1et−1+a2(1−et−1)‖≤1

a2

in other words, it is equal to the largest constant a2 that allows∫ 1

0

∣∣(a1 − a2)et−1 + a2

∣∣ dt ≤ 1

for any a1.

Assuming we have found such a constant a2, it remains to char-

acterize our optimal solution u. We do this by using the second

part of theorem 7, which states that the optimal u is aligned with

the optimal (a1−a2)et−1 +a2 (we will denote this function by x).
Thus, we need

〈x,u〉 = ‖x‖‖u‖∗

Feeding in the de�nition of the inner product for this primal-dual

pair (ie: the form of a linear functional), as well as the two norms,

we �nd that we need∫ 1

0
x(t)u(t) dt = max

t∈[0,1]
|u(t)|

∫ 1

0
|x(t)| dt

It is clear that for this to be true, u(t) must be equal to its maxi-

mum absolute value everywhere and its sign must agree with the

sign of x(t) everywhere.

But since x(t) is the sum of an exponential and a constant term, it

can only change sign once. Thus, u(t) can only change sign once,

and must be `bang-bang'.

� � �

Daniel Guetta (daniel.guetta.com), January 2012
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