
Convex Optimization

Review Sessions 5 & 6

Question 1 (Estimation with Conditional
Independence Constraints)

1Consider N independent samples y(1), · · · ,y(N) ∈ Rn of a vector
X. Assume X has a multivariate Gaussian distribution.

Assume also that you are given a list N of tuples (i, j) ∈ {1, · · · , n}×
{1, · · · , n}. If (i, j) ∈ N , then Xi and Xj are conditionally inde-
pendent in the said distribution (in other words, the distribution
of the vector (Xi, Xj) ∈ R2 conditional on every other component
of X has a diagonal covariance matrix).

Write a program to �nd the maximum-likelihood estimates of the
mean and covariance matrix of the distribution given the observed
data and the conditional independence assumptions.

Solution

Let us �rst develop some notation.

• The subscript i,j implies that we only need components con-
cerning variables i and j. For example, µi,j = (µi, µj)

>.
Similarly,

Σi,j =

[
Σii Σij

Σji Σjj

]
• The subscript i,j on a barred variable implies every compo-
nent concerning variables other than i and j.

In this question, we will, without loss of generality, re-order the
components of X so that i and j are the last two components.

We'll begin by proving a lemma, followed by a theorem

Theorem 1. (Completing the Square)

x>Ax+ b · x = (x+A−1b)>A(x+A−1b)− b>A−1b

Proof. This is none other than completing the square in multiple

1Based on additional exercise 6.2 in Boyd
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dimensions.

x>Ax+ b · x = ‖A1/2x‖22 + 2b · x
= ‖A1/2x+A−1/2b‖22 − b>A−1b

= ‖A1/2(x+A−1b)‖22 − b>A−1b

= (x+A−1b)>A(x+A−1b)− b>A−1b

Theorem 2. (Conditional Marginal Density of Multi-

variate Gaussian) Suppose X ∼ N(µ,Σ). Then

(Xi,j |X̄i,j = x̄i,j) ∼ N
(
µi,j +B>Σ̄−1

i,j (x̄i,j − µ̄i,j), S
)

where S is the Schurr complement of Σ̄i,j in Σ.

Proof. To show this, consider the following decomposition of Σ

Σ =

[
Σ̄i,j B
B> Σi,j

]
and note that by the discussion on page 650 of Boyd,

Σ−1 =

[
Σ̄−1
i,j + Σ̄−1

i,j BS
−1B>Σ̄−1

i,j −Σ̄−1
i,j BS

−1

−S−1B>Σ̄−1
i,j S−1

]

where S is the Schur complement in the statement of the theorem.
Now, let χ = x− µ and consider that1

P(Xi,j = xi,j |X̄i,j = x̄i,j) ∝ P(X = x)

∝ exp

{
−1

2
χ>Σ−1χ

}
∝ exp

{
−1

2

[
χ>i,jS

−1χi,j − χi,j · (2S−1B>Σ̄−1
i,j χ̄i,j)

]}
∝ exp

{
−1

2

[
(χi,j −B>Σ̄−1

i,j χ̄i,j)
>S−1(χi,j −B>Σ̄−1

i,j χ̄i,j)
]}

This is clearly in the form of a multivariate distribution of the
form stated in the theorem.

In some sense, the theorem above is slight overkill. All we'll really
need for this question is the following theorem

Theorem 3. Suppose X ∼ N(µ,Σ). Then Xi and Xj are
independent given the values of every other variable if and only
if (Σ−1)i,j = 0.

1Note that it is customary, when
working with conditional distribu-
tions, to ignore all multiplicative
factors that do not depend on the
quantities of interest (in this case
xi,j . By Bayes' Theorem, the con-
stants will then `work out' to ensure
our result is a proper distribution.
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Proof. We showed in Theorem 2 that the inverse of the conditional
covariance matrix ofXi,j conditional on X̄i,j is the matrix formed
by the ith and jth rows and columns of Σ−1.

Now, the conditional covariance matrix is diagonal if and only if
its inverse is diagonal, which happens if and only if the matrix
formed by the ith and jth rows and columns of Σ−1 is diagonal.
Thus, we require

(Σ−1)i,j = (Σ−1)j,i = 0

But since Σ is symmetric (since it's a covariance matrix), the con-
dition in the theorem is enough.

After this lengthy preliminary, let's get going. Our decision vari-
ables in this case are µ and Σ, the maximum-likelihood parame-
ters. De�ne the following

• m = 1
N

∑N
i=1 y

(N)

• ψ is the matrix whose columns are the vectors y(i) −m.

• S = 1
N

∑N
i=1(y(i) −m)(y(i) −m)> = 1

Nψψ
>

And now, note that given y(1), · · · ,y(N), the log-likelihood is

` =
N∑
i=1

log

{
1

(2π)n/2
√

det Σ
exp

[
−1

2
(y(i) − µ)>Σ−1(y(i) − µ)

]}

= −N
2

log det Σ− 1

2

N∑
i=1

(y(i) − µ)>Σ−1(y(i) − µ) + C

= −N
2

log det Σ− 1

2

N∑
i=1

(y(i) − µ+m−m)>Σ−1(y(i) − µ+m−m) + C

= −N
2

log det Σ− N

2
(µ−m)>Σ−1(µ−m)− 1

2
tr(ψ>Σ−1ψ) + C

= −N
2

log det Σ− N

2
(µ−m)>Σ−1(µ−m)− N

2
tr(Σ−1 1

N
ψψ>) + C

=
N

2

(
− log det Σ− (µ−m)>Σ−1(µ−m)− tr(Σ−1S)

)
+ C

=
N

2

(
log det Σ−1 − (µ−m)>Σ−1(µ−m)− tr(Σ−1S)

)
+ C

We need to minimize this with respect to both µ and Σ. Clearly,
the optimal solution for µ will be µ = m. This leaves us with the
following quantity to maximize

log det Σ−1 − tr(Σ−1S)

Finally, we need to use the last theorem above to add constraints
to ensure the independence assumptions in N are satis�ed.
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Our �nal program is

max log det Σ−1 − tr(Σ−1S)

s.t. (Σ−1)ij = 0 ∀(i, j) ∈ N

Σ � 0

This is convex in Σ.

� � �

Question 2 (Image Interpolation)

A grayscale image is represented as a matrix of pixels A ∈ Rm×n.
Some of the pixels are known to you, but others are not.

Find a way to reconstruct the image using just the known pixels.

Solution

Suppose K is the set of pixels we know. Our decision variables
are Aij for (i, j) /∈ K. Our aim will be to set these pixels so as to
make the picture as `smooth' as possible.

We'll experiment with two di�erent `kinds' of smoothness

`2 variation simply measures roughness as

m∑
i=2

n∑
j=2

{
(Aij −Ai−1,j)

2 + (Aij −Ai,j−1)2
}

Total variation simply measures roughness as

m∑
i=2

n∑
j=2

{|Aij −Ai−1,j |+ |Aij −Ai,j−1|}

� � �

Question 3 (Theory of Hilbert Spaces)

In this �question�, we'll be discussing Hilbert spaces.

Note that much of the discussion here is analogous to the discus-
sion we'll be having when we consider Banach spaces, and in many
cases the proofs and de�nitions are identical. Whenever this is the
case, I've annotated the relevant section with a * � those items
will not be repeated when we consider Banach spaces.

Solution

2See http://bit.ly/Hdf9nj for the
de�nition of a vector space. One of
the properties required of a set S for
it to be a vector space is that it be
closed under addition (ie: for any
x,y ∈ S, we have x + y ∈ S). But
there are many more.

3To be an inner product 〈x,y〉 must
satisfy

• 〈x,y〉 = 〈y,x〉∗ (where x∗ is
the complex conjugate of x)

• 〈x + y,z〉 = 〈x,z〉+ 〈y,z〉

• 〈λx,y〉 = λ〈x,y〉 for all λ

• 〈x,x〉 ≥ 0, with equality if
and only if x = 0.
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Before we study Hilbert Spaces, we ought to de�ne them.

De�nition 1. (Pre-Hilbert Space) A pre-Hilbert space is a
vector space2 V over C equipped with an inner product3 〈x,y〉 :
V × V → C

Of course, one common pre-Hilbert space is Rn, equipped with
the standard inner product. However, this is only one example
of many vector spaces. Indeed, if you've never encountered more
general vector spaces before, it might require a pretty radical shift
in mindset to stop viewing vectors as arrows in space, and instead
to see them as objects that satisfy certain properties. In some
ways, it's quite liberating!

Here are a few examples of vector spaces you might not have en-
countered before.

Example

• The space of all sequences that are square summable
is a vector space (quick check: the sum of two
such sequences is square summable as well, so it
is also in the space). Each element x is an in�nite
sequence {xi}∞i=1 that satis�es

∑∞
i=1 x

2
i <∞.

This vector space can be made into a pre-Hilbert
space by de�ning the following inner product.

〈x,y〉 =
∞∑
i=1

xiyi

• The space of all polynomials of [a, b] is a vector
space (quick check: the sum of two polynomials is
also a polynomial and therefore also in the space).
Each element x is a polynomial on [a, b]. We can
make this into a pre-Hilbert space by de�ning the
following inner product

〈x,y〉 =

∫ b

a
x(t)y(t)dt

Note also the following useful theorem

Theorem 4. The induced norm

‖x‖ =
√
〈x,x〉

satis�es all the properties required of norms. Furthermore, the
inner product is continuous in both its arguments with respect
to this nor.
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Proof. Luenberger, pp 49.

Now that we understand the concept of a pre-Hilbert space, we
are ready to de�ne a Hilbert space.

De�nition 2. (Hilbert Space)

A Hilbert Space is a pre-Hilbert space in which every Cauchy
sequence4 converges in the space, with respect to the induced
norm ‖x‖ =

√
〈x,x〉.

When this happens, we say the underlying vector space is com-

pletes with respect to the induced norm.

The idea of completeness (which is loosely related to the idea of
closure) may seem utterly mystifying � so let's look at an example.

Example

Consider the vector space C[0, 1] of all continuous func-
tions on the interval [0,1] (quick check: the sum of two
such functions is also continuous and therefore in the
space). Consider the following two norms

‖f‖1 = max
t∈[0,1])

|f(t)| ‖f‖2 =

∫ 1

0
|f(t)| dt

(It turns out that neither norms are induced by an in-
ner product, so we haven't really de�ned a pre-Hilbert
space. Regardless, we can still explore the complete-
ness C[0, 1].)

Initially, you might be worried that C[0, 1] is not com-
plete. Indeed, it's easy to �nd a set of continuous
functions that tend to the step function (which is not
in C[0, 1]).

It actually makes no sense, however, to talk of com-
pleteness without quoting a norm. So let's consider
the `counterexample' for each of the norms above.

• For ‖f‖2, we do indeed have a problem. As our
sequence of functions approaches the step func-
tion, the integral of these functions does indeed
approach the integral of the step function. Thus,
the sequence is Cauchy, and the fact it does not
converge in the space implies our space is incom-
plete.

• For ‖f‖1, we don't have this problem! Indeed,
note that ‖fn − fm‖ �nds the maximum di�er-
ence between the two functions fn and fm, and

4A sequence {xn} is Cauchy in a
pre-Hilbert space V is Cauchy if and
only if

‖xn − xm‖ → 0

as n,m→∞.
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we will never �nd a continuous function that gets
arbitrarily close to the discontinuous step func-
tion at every single point. Thus, the sequence
is not Cauchy, and this counterexample doesn't
mean C[0, 1] is incomplete. (Indeed, it turns out
that C[0, 1] is complete with respect to ‖f‖1).

Before we complete this section, it is worth mentioning some com-
mon Hilbert spaces, for future reference

Theorem 5. (Common Hilbert Spaces)

The following spaces are Hilbert spaces:

• Rn, with the standard dot product.

• `2 (the set of square-summable sequences) with inner
product 〈x,y〉 =

∑
xiyi.

• L2 (the set of square-integrable functions) with inner
product 〈x,y〉 =

∫
x(t)y(t)dt.

The Projection Theorem

The time has come to look at our �rst optimization problem in
(possibly in�nite-dimensional) Hilbert space. We will consider the
following problem

Given an a�ne set V in a Hilbert space H, �nd the
vector v ∈ V of minimum norm (ie: the vector closest
to 0).

This is a simpler problem that most you've encountered so far in
this course � indeed, it insists that the objective function be a
norm, and it only allows the feasible region to be an a�ne space
(in other words, the result of equality constraints). Nevertheless,
we will �nd that this framework is useful in solving many problems
of interest.5

Let us �rst derive some optimality conditions for such a problem.

Theorem 6. (Projection) We give three (equivalent) state-
ments of this important theorem

• Let H be a Hilbert space and V a closed a�ne set in H
(which can be expressed as V = v0 + M , where M is a
closed subspace of H).

Then there exists a unique vector vopt ∈ V of minimum
norm. A necessary and su�cient condition for vopt to be

5In fact, the next theorem can be
extended to convex sets quite eas-
ily � see Luenberger pp 69. That
said, most of the problems we'll con-
sider in this course will only involve
equality constraints, and this dis-
cussion here will be more than suf-
�cient in dealing with those prob-
lems.
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this vector is that it be orthogonal to M .

• Let H be a Hilbert space, M a closed subspace of H, and
x an arbitrary vector in H.

Then there exists a unique vectormopt ∈M that is closer
to x than any other vector in M . A necessary and su�-
cient condition formopt to be this vector is that x−mopt

be orthogonal to M .

• Let H be a Hilbert space, x an arbitrary vector in H,
and V a closed a�ne set in H (which can be expressed as
V = v0 +M , where M is a closed subspace of H).

Then there exists a unique vector vopt ∈ V that is closer to
x than any other vector in V . A necessary and su�cient
condition for vopt to be this vector is that x − vopt be
orthogonal to M .

Proof. See Luenberger, pp 50-51 and pp 64.

This theorem is of enormous practical importance, as will become
obvious in the forthcoming exercises. It also allows us to derive
the following extremely useful theorem:

Theorem 7. LetM be a closed subspace of a Hilbert space H.
Then

H = M ⊕M⊥

and
M = M⊥⊥

whereM⊥ is the set of vectors orthogonal to (all vectors in)M .

Proof. The �rst statement follows directly from the Projection
Theorem. By the second statement above, for every x, there is
a point mopt ∈M such that m⊥ = x−mopt ∈M⊥. Thus,

x =

∈M︷ ︸︸ ︷
mopt +

∈M⊥︷ ︸︸ ︷
x−mopt

We can therefore express any x ∈ H as the sum of a vector in M
and one in M⊥.6

For the second part, it is obvious that M ⊆ M⊥⊥, because every
vector in M⊥ is orthogonal to every vector in M , and so every
vector in M is orthogonal to every vector in M⊥ and therefore in
M⊥⊥. To show the other direction:

• Suppose we �nd a vector x ∈M⊥⊥ but x /∈M .

6We can show that this represen-
tation is unique by noting that if
x = m1 + m⊥1 and x = m2 + m⊥2 ,
then (m1 −m2) + (m⊥1 −m⊥2 ) =
x − x = 0. However, since each of
the bracketed terms are orthogonal
(being in M and M⊥), we can take
inner products of each side with it-
self to conclude that

‖m1 −m2‖2 + ‖m⊥1 −m⊥2 ‖2 = 0

which implies that m1 = m2 and
m⊥1 = m⊥2 . Thus, the representa-
tion is unique.
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• By the �rst part, we can write x = m+m⊥ (with m ∈ M
and m⊥ ∈M⊥).

• However, since M ⊆ M⊥⊥, we have that m ∈ M⊥⊥. As
such, since by assumption x ∈M⊥⊥, we have that x−m =
m⊥ ∈M⊥⊥.

• Thus, m⊥ ∈ M⊥ and m⊥ ∈ M⊥⊥. Thus, the vector is
perpendicular to itself and must be equal to 0; m⊥ = 0.

• As such, x = m ∈M . This is a contradiction.

Linear Functionals

Having �nally de�ned Hilbert spaces, we now turn to functions on
elements of these spaces.

De�nition 3. (Linear Functional*) A function φ : V → C
is a linear functional on V if for any x,y ∈ V and α, β ∈ C

φ(αx+ βy) = αφ(x) + βφ(y)

We further say that

• φ is continuous if for every ε > 0, there exists a δ such
that

|φ(y − x)| ≤ ε ∀y : ‖x− y‖ ≤ δ

• φ is bounded if there exists some constant M such that

|φ(y)| ≤M‖y‖ ∀y ∈ V

We de�ne the norm of the functional to be the smallest
such constant

‖φ‖ = inf {M : |ϕ(y)| ≤M‖y‖}
= inf {M : ‖y‖|ϕ(ŷ)| ≤M‖y‖}
= sup

‖y‖=1
|φ(y)‖

We begin by proving a useful theorem

Theorem 8. (*) Let φ be a linear functional. The following
three statements are equivalent

• φ is continuous at some point.

• φ is continuous everywhere.
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• φ is bounded.

Proof. Let's prove each step:

1 → 2 : Let φ be continuous at x0. Note that by linearity,

|φ(y)− φ(x)| = |φ(y − x+ x0)− φ(x)0)|

Continuity at x0 then implies continuity everywhere.

2 → 3 : If φ is continuous everywhere, it is continuous at 0. As
such, there exists a δ such that

|φ(y)| ≤ 1 ∀‖y‖ ≤ δ

Now, consider that for any z

|φ(z)| = ‖z‖
δ

∣∣∣∣φ(δ z‖z‖
)∣∣∣∣ ≤ ‖z‖δ

3 → 1 : If φ is bounded (with norm M), then

|φ(z)| ≤ ε ∀‖z‖ ≤ ε

M

It is therefore continuous at 0.

We now prove a somewhat astounding and rather beautiful theo-
rem relating to linear functionals in Hilbert spaces.

Theorem 9. (Riesz-Frechet)

Let φ be a bounded linear functional on a Hilbert space H with
inner product 〈·, ·〉. Then there exists an element z ∈ H such
that ‖z‖ = ‖φ‖ (where the norm of a linear functional was
de�ned above) and

φ(x) = 〈x, z〉 ∀x ∈ H

Proof. Let
M = {y : φ(y) = 0}

Since the functional is continuous, M is closed. Now, if M = H
(ie: φ is 0 for every element in the space), simply set z = 0 and
we're done.

If not, pick some γ ∈M⊥, and consider

φ

(
x− φ(x)

φ(γ)
γ

)
= φ(x)− φ(x)

φ(γ)
φ(γ) = φ(x)− φ(x) = 0
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As such, we have that

x− φ(x)

φ(γ)
γ ∈M ⇒

〈
x− φ(x)

φ(γ)
γ,γ

〉
= 0

⇒ 〈x,γ〉 =
φ(x)

φ(γ)
〈γ,γ〉

⇒ φ(x) =
φ(γ)

‖γ‖2
〈x,γ〉

⇒ φ(x) =

〈
x,
φ̄(γ)

‖γ‖2
γ

〉
⇒ φ(x) = 〈x, z〉

Furthermore, by the Cauchy-Schwarz inequality,

φ(x) = 〈x, z〉 ≤ ‖z‖ · ‖x‖ ⇒ ‖φ‖ = ‖z‖

As required.

Why does this theorem qualify as `astounding and rather beauti-
ful'? Simply because it con�rms something we already knew in-
tuitively for Rn � that every linear function(al) in a Hilbert Space
corresponds to another element in that same space; in other words,
the space is self-dual. In Rn, this is obvious � we already know
that every hyperplane can be represented by a vector in Rn.

While we're on the topic, let's formally de�ne a hyperplane.

De�nition 4. (Hyperplane*)

A hyperplane H in a normed linear space X (for example, a
Hilbert space) is a maximal proper a�ne set. In other words,
if H ⊆ A and setA is a�ne, then either A = H or A = X.

Theorem 10. (Characterizing Hyperplanes*)

A set H is a hyperplane in a normed linear space X if and only
if it is of the form

H = {x ∈ X : φ(x) = c}

where φ is a non-zero linear functional, and c is a scalar.

Furthermore, H is closed if and only if f is continuous.

Proof. See Luenberger, pp 129-130.
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The Hahn-Banach Theorem

We now prove two theorems which, in Hilbert space, are either
trivial or already known. However, by proving these theorems for
Hilbert spaces, we will familiarize ourselves with the rather di�cult
proofs involved, which will hopefully make the proofs easier to
understand when we move on to the signi�cantly more di�cult
case of Banach spaces.

First, a de�nition

De�nition 5. (Seminorm*) A real-valued function p de�ned
on a real vector space X is said to be a sublinear functional or
seminorm on X if it satis�es

• p(x1 + x2) ≤ p(x1) + p(x2).

• p(αx) = αp(x) for all α ≥ 0.

In other words, it satis�es all the properties of a norm except
for p(x) = 0⇔ x = 0.

Theorem 11. (Special Case of Hahn-Banach)

Let M ⊆ H be a closed subspace of a Hilbert space H, and let
p be a seminorm on X.

Let φ be a continuous linear functional onM satisfying φ(m) ≤
p(m) for all m ∈ M . Then there exists a continuous linear
extension of φ on H, Φ, such that Φ(x) ≤ p(x) for all x ∈ H.

Proof. In a Hilbert space, the proof is almost trivial (though it
took me many hours to realize just how trivial!) It simply relies
on two facts

• p can trivially be shown to be convex7 . By the �rst-order
conditions for convexity, this means that there is always a
hyperplane that lies below this function.

• By the Riesz-Frechet Theorem, both φ and Φ are hyper-
planes that pass through 0:

φ(m) = 〈m,f〉, for some f ∈M

Φ(x) = 〈x,F 〉, for some F ∈ X

Since φ underestimates p in M , its de�ning vector f must
lie in the projection of ∂p(0) on M .

Thus, it is possible to �nd an F ∈ ∂p(0) such that F =
f + f⊥, where f⊥ ∈ M⊥. The resulting Φ clearly agrees
with φ on M ,8 and also globally underestimates p.

7By the two properties of semi-
norms,

p(λx + λ̄y) ≤ p(λx) + p(λ̄y)

= λp(x) + λ̄p(y)

8. . . because for any m ∈M ,

Φ(m) = 〈f + f⊥,m〉
= 〈f ,m〉
= φ(m)
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Let us now get one �nal piece of mileage out of the H-B Theorem
by using it to prove the Separating Hyperplane Theorem. To do
this, we will need to introduce some new notation.

De�nition 6. (Minkowski Functional*) Let K be a convex
set in a normed linear spaceX and suppose 0 is an interior point
of K . Then the Minkowski Functional p of K is de�ned on X
by

p(x) = inf
r≥0

{
r :
x

r
∈ K

}
Intuitively, p(x) is the factor by which K must be expanded to
include the vector x.

We now prove some results relating to the Minkowski Functional.

Theorem 12. (Properties of the Minkowski Func-

tional*) The Minkowski Functional satis�es the following
properties

1. 0 ≤ p(x) ≤ ∞ for all x ∈ X.

2. p(αx) = αp(x) for all α > 0.

3. p(x1 + x2) ≤ p(x1) + p(x2)

4. p is continuous.

5. The closure of K and the interior of K are given by

cl(K ) = {x : p(x) ≤ 1}

int(K ) = {x : p(x < 1}

Note that points 2 and 3 above imply that p is a seminorm.

Proof. Most of these results are rather intuitive, and not particu-
larly di�cult to prove. See pp 131-132 of the Luenberger for the
full proof.

And �nally. . .

Theorem 13. (Geometric Hahn-Banach*)

Let K be a convex set with non-empty interior in a Hilbert
space H. Suppose V is an a�ne set in X (which could be a
single point x0) that contains no interior points of K . Then
there is a closed hyperplane in H containing V but containing
no interior point of K .
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In other words, there exists an element h∗ ∈ H such that

〈v,h∗〉 = c ∀v ∈ V

〈k,h∗〉 < c ∀k ∈ int(K )

Proof. First, consider that by translating our entire space, we can
assume 0 ∈ int(K ) and 0 /∈ V .

Then, letM be the smallest subspace that contains the a�ne space
V . Then in that subspace, the set V is a hyperplane (because it is
a minimally a�ne set) and it doesn't contain 0 (because 0 /∈ V ).
Thus, by our characterisation of hyperplanes (theorem 10), we
have found a functional φ on M such that

V = {x : φ(x) = 1}

Now consider the Minkowski Functional of K . Since no point in
V is in the interior of K , we have that p(v) ≥ 1 for all v ∈ V ,
and so9

p(αv) = αp(v) ≥ α · 1 = αφ(v) = φ(αv) ∀v ∈ V

So in other words, since all vectors in M have the form αv for
some v ∈ V , we �nd that

φ(m) ≤ p(m) ∀m ∈M

Now, apply the Hahn-Banach Theorem to �nd a functional Φ on
X such that

Φ(x) ≤ p(x) ∀x ∈ H

and let
H = {x : Φ(x) = 1}

Clearly, Φ(v) = 1 for all v ∈ V (since Φ is an extension of φ), and
since Φ(x) ≤ p(x), we have that Φ(k) < 1 for all k ∈ int(K ).

Finally, note that by Theorem 12, p is continuous, and so H is
closed.

� � �

Question 4 (Primal and Dual Norm Mini-
mization)

Consider the following two problems

9Strictly speaking, this argument
only applies for α > 0. However,
if α < 0, then φ(αx0) = α < 0,
and since p(x) ≥ 0, we still �nd that
φ ≤ p.
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1. Given a Hilbert spaceH, a vector x ∈ H, and a set of vectors{
y(1), · · · ,y(N)

}
⊂ H, �nd the best approximation of x as

a linear combination of the y.

2. Given a Hilbert space H, a set of vectors
{
y(1), · · · ,y(N)

}
⊂

H, and a set of constants {c1, · · · , cN}, �nd the vector x of
smallest norm that that satis�es 〈x,y(i)〉 = ci for all i.

Characterise the solution to both these problems.

Solution

Consider each problem

1. Let M be the subspace generated by the y(i):

M =

{
m =

N∑
i=1

αiy
(i)

}

This problem simply seeks the vector in M that is closest
to x. By the second part of the projection theorem (6), the
unique optimal vectormopt satis�es x−mopt is inM

⊥. This
is equivalent to insisting that x−mopt be orthogonal to every
y(i).

As such, letting

mopt =

N∑
i=1

αiy
(i)

We can characterize our solution α by solving the following
N equations〈

x−
∑N

i=1αiy
(i),y(i)

〉
= 0 ∀i

Or equivalently

 〈y
(1),y(1)〉 · · · 〈y(1),y(N)〉

...
...

〈y(N),y(1)〉 · · · 〈y(N),y(N)


>

α =

 x · y(1)

...

x · y(N)


The matrix is called theGram matrix and is denotedG(y(1), · · · ,y(N)).
Provided G is invertible10, the problem has a unique solution,
which is characterized by this set of linear equations.

2. Let M be the subspace generated by the y(i):

M =

{
m =

N∑
i=1

αiy
(i)

}

10This happens if and only if the
vectors y(i) are linearly independent
� see Luenberger pp 56, Proposition
1
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and note that

M⊥ =
{
x : 〈x,y(i)〉 = 0 for all i

}
Now, consider the a�ne space

V =
{
x : 〈x,y(i)〉 = ci for all i

}
Our problem is to �nd the vector vopt ∈ V of minimum norm.
It shouldn't be too di�cult, though, to convince yourself that

V = v0 +M⊥

where v0 satis�es 〈v0,y
(i)〉 = ci for all i.

11

By the �rst form of the projection theorem (Theorem 6), the
unique vector vopt satis�es

12

vopt ∈ (M⊥)⊥ = M

Thus, our solution has the form

vopt =
N∑
i=1

αiy
(i)

Requiring this vector to be in V leads the following set of
linear equations

G(y(1), · · · ,y(N))>α = c

These equations characterize our solution.

� � �

Question 5 (Polynomial Optimization)

Part A

2Find the function x(t) = a+ bt that minimizes
∫ 1
−1[t2 − x(t)]2dt.

Solution

We will cast this problem as a minimum-norm problem in Hilbert
space, and then use the projection theorem.

We �rst need to choose a Hilbert space in which to cast this prob-
lem. We choose L2[−1, 1], the space of square-integrable functions

2Luenberger Chapter 3, problem 5.

11This works if the number of lin-
early independent y is less than n.
If this isn't true, though, the y span
the space, and this problem becomes
silly.

12Equality follows by Theorem 7.
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on [−1, 1]. This is a Hilbert space (see top of pp 49 in the Luen-
berger). The inner product in this space is

〈x,y〉 =

∫ 1

−1
x(t)y(t)dt

Re-stated in a more user-friendly way, our problem basically re-
quires us to �nd the vector

y(t) = t2 + bt+ a ∈ L2[−1, 1]

that has minimum norm.13

The set of vectors we seek is, in fact, the a�ne space V given by14

V = (t2) +M

where M is the subspace

M = {(a+ bt)}

By the �rst form of the projection theorem (Theorem 6), the
unique vector vopt ∈ V of minimum norm is orthogonal to M .
In other words, it is a vector such that

〈t2 + boptt+ aopt, a+ bt〉 = 0 ∀a, b

Using our particular inner product, this becomes

〈t2 + boptt+ a, a+ bt〉 =

∫ 1

−1
(t2 + boptt+ aopt)(a+ bt)dt

=

∫ 1

−1
bt3 + (a+ bbopt)t

2 + (abopt + aoptb)t+ aaoptdt

=
2

3
(a+ bbopt) + 2aaopt

We need this to be 0 for all a and b. Clearly, this immediately
leads to bopt = 0. We then get

2

3
a+ 2aaopt = 0 ∀a

which immediately leads to aopt = −1/3.

Thus, the linear function that solves our problem is15

x(t) =
1

3

We can verify this result explicitly. Consider that∫ 1

−1
[t2 − a− bt]2dt =

∫ 1

−1
t4 − 2bt3 + (b2 − 2a)t2 + 2abt+ a2dt

=
2

5
+

2

3
(b2 − 2a) + 2a2

13In fact, this is not quite true � the
norm has the form

∫ 1
−1[t2+x(t)]2dt,

whereas we seek the quantity with a
negative sign before x. Dealing with
this is trivial, though � we'll simply
�ip the sign on the a and b we obtain
by minimizing the norm.

14Remember here that x(t) = t2 is
such a vector in our space, L2[−1, 1].

15Note that we're �ipping the sign
on aopt, as discussed above.
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Clearly, setting b = 0 minimizes this expression with respect to b.
We're then left to minimize

2a2 − 4

3
a+

2

5

Di�erentiating and setting to 0, we �nd that this occurs when

4a =
4

3
⇒ a =

1

3

as deduced above.16

Part B

3Consider a function x ∈ L2[0, 1]. Suppose that we wish to �nd a
polynomial p of degree n or less which minimizes∫ 1

0
|x(t)− p(t)|2dt

while satisfying ∫ 1

0
p(t)dt = 0

Show that this problem has a unique solution, and that it can be
solved in the following two steps

• Find the polynomial q of degree n or less which minimizes∫ 1

0
|x(t)− q(t)|2dt

(ignoring the constraint).

• Find the polynomial p of degree n or less which minimizes∫ 1

0
|p(t)− q(t)|2dt

and satis�es ∫ 1

0
p(t)dt = 0

Brie�y describe how you could achieve each part.

Solution

First, consider that this is simply an norm-minimization problem
in L2[0, 1], with inner product

〈x,y〉 =

∫ 1

0
x(t)y(t)dt

Now, consider our two constraints

3Based on Luenberger Chapter 3, problem 6

16Those of you familiar with the
Euler-Lagrange equations can also
verify that in this case, the E-L
equations

∂f

∂x
=

d

dt

(
∂f

∂x′

)
reduce to

2x(t)− 2t2 = constant

. This immediately implies that b =
0, and optimizing over a gives the
required result.
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• By requiring that our polynomial p be of degree n or less,
we are requiring it to be in the subspaceM generated by the
elements

{
1, t, t2, · · · , tn

}
of L2[0, 1]:

M =

{
m =

n∑
i=0

αit
i

}

This is obviously closed.

• By requiring the integral of p to be 1 (and remembering that
1 ∈ L2[0, 1]), we are requiring it to be in the subspace

M ′ = {p : 〈p, 1〉 = 0}

This is also closed, since the inner product is continuous.

As such, our optimization problem is simply

min ‖p− x‖
s.t. p ∈ K = M ∩M ′

Now, consider that K is non-empty (p = 1 ∈ K), closed and
a�ne (it is an intersection of two closed a�ne sets). Thus, by the
projection theorem, there is a unique solution popt to this problem,
which must satisfy

popt − x ∈ [M ∩M ′]⊥ (1)

All we need to show is that a p that solves the successive problems
in the question also satis�es this condition. To do this, consider
that

• By the second form of the projection theorem, a vector q
that solves the �rst sub-problem satis�es

x− q ∈M⊥

• By the second form of the projection theorem, a vector p
that solves the second sub-problem satis�es

p− q ∈ (M ′)⊥ ⇒ p− x+ (x− q) ∈ (M ′)⊥

And since we know that x− q ∈M⊥, this means that

p− x ∈ [M ∩M ′]⊥

As in equation 1. Thus, solving each problem individually
leads to an optimal solution for the global problem.

� � �
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Question 6 (A Control Problem)

4The angular shaft velocity ω of a d-c motor driven by a variable
current source u is governed by the following �rst-order di�erential
equation:

ω̇(t) + ω(t) = u(t) (2)

where u(t) is the �eld current at time t. The energy expended by
the �eld u in a time T is assumed to be proportional to∫ T

0
u(t)2dt

The angular position θ of the motor is the time time integral of ω.

Initially, the motor is at rest and at a starting angle of 0:

ω(0) = θ(0) = 0

We seek to �nd the function u of minimum energy which rotates
the shaft to θ = 1 and brings it back to rest, within one second:

θ(1) = 1 ω(1) = 0

Solution

This point of this problem is to �nd the optimal u(t). Since we're
trying to minimize the energy, it makes sense to restrict ourselves
to u's with �nite energies � in other words, we can cast this problem
as an optimization problem in L2[0, 1], with norm

〈x,y〉 =

∫ 1

0
x(t)y(t)dt

Clearly, we wish to minimize the norm. However, the constraints
on θ and ω at t = 1 constrain the particular u we can choose. To
write this constraints explicitly, we begin by solving di�erential
equation 2). This can easily be done by separability. Multiplying
the equation throughout by the integrating factor et, we obtain

ω̇(t)et + ω(t)et = u(t)et

this can be re-written as

d

dt
(ω(t)et) = u(t)et

Solving, and noting that et−1 is square integrable between 0 and
1 and is therefore in L2[0, 1], we obtain

ω(1)− ω(0) =

∫ 1

0
u(t)et−1dt = 〈u(t), et−1〉

4Based on Luenberger, pp 66 Example 1.20



or, since ω(0) = 0 and that we requir ω(1) = 0

〈u(t), et−1〉 = ω(1) = 0

We have therefore succeeded in expression our �rst constraint in
a recognizable form.

For the second constraint, you may be tempted to write θ(1) −
θ(0) =

∫ 1
0 ω(t)dt, but in this case this leads to a dead-end (because

ω is itself expressed in integral form). Instead, use equation 2
directly to relate ω̇ and θ̇ as follows

ω̇(t) + θ̇(t) = u(t)

From the results above, we know that ω̇(t) = u(t)et−1, and so we
obtain

θ̇(t) = u(t)(1− et−1)

As such,

θ(1)− θ(0) =

∫ 1

0
u(t)(1− et−1) = 〈u(t), 1− et−1〉

Bearing in mind that θ(0) = 0 and that we require θ(1) = 1, this
becomes

〈u(t), 1− et−1〉 = θ(1) = 1

As such, our problem is simply to minimize the norm of u subject
to the two constraints

〈u(t), et−1〉 = 0

〈u(t), 1− et−1〉 = 1

By the result of an earlier question, the result will have the form
of a linear combination of the two vectors in the inner products
above. In other words,

u(t) = αet−1 + α′(1− et−1)

or, more simply,
u(t) = α1 + α2e

t

Evaluating the two constraints (this is trivial � it simply evolves
evaluating each integral and obtaining two linear constraints in α1

and α2), we conclude that

u(t) =
1

3− e
[
1 + e− 2et

]
� � �

Daniel Guetta (daniel.guetta.com), January 2012
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