
Convex Optimization

Review Session 2

Question 1 (A pot-pourri of short n' sweet
questions)

1. 1 Suppose f : Rn → R is convex, f : Rn → R is concave,

domf = domg = Rn, and for all x, g(x) ≤ f(x). Show

that there exists an a�ne function h such that for all x,
g(x) ≤ h(x) ≤ f(x). In other words, if a concave function g
is an underestimator of a convex function f , then we can �t

an a�ne function between f and g.

2. 2 Recall that the Kullback-Leibler divergence between two

vectors u,v ∈ Rn++ is given by

Dkl(u,v) =
n∑
i=1

{ui log(ui/vi)− ui + vi}

Show that it is convex, and so that

Dkl(u,v) ≥ 0 for all u,v ∈ Rn++

with equality if and only if u = v.

3. 3 In general, the product or ratio of two convex functions is

not convex. However, show that

• If f and g are both convex, positive and increasing or

decreasing, then fg is convex.

• If f and g are both concave and positive, and one func-

tion is increasing while the other is decreasing, then fg
is concave.

• If f is convex, increasing and positive and g is concave,
decreasing and positive, then f/g is convex.

Solution

1. First note that intepi(f) and1 hypo(g) are non-empty (be-

cause the domain of each function is Rn) and do not intersect

(since g(x) ≤ f(x)). As such, these sets can be separated by

a hyperplane. That hyperplane is precisely the a�ne func-

tion that lies between f and g.

2. Checking convexity over Rn++ × Rn++ is elementary 2 . To

1Problem 3.12 in Boyd
2Problem 3.13 in Boyd
3Problem 3.32 in Boyd

1Recall that the hypograph of g, de-
noted hypo(g) is the set that lies be-
low a given function.

2One way of seeing this is cal-
culating the Hessian of f(x, y) =
x log(x/y). You'll �nd it is

∇2f(x, y) =

(
1/x −1/y
−1/y x/y2

)
with resulting eigenvalues

λ =

(
0,

1

x
+

x

y2

)
both of which are clearly positive
over Rn++, making f(x, y) convex.
Or, you could just note that f(x, y)
is the perspective function of f(x) =
− log(x) which is itself convex. Ei-
ther way, once the convexity of
f(x, y) is established, the convexity
of the KL-divergence follows since
it's then simply a sum of convex
functions.
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prove our inequality, consider that f(v) =
∑n

i=1 vi log vi is
strictly convex for strictly positive v3Thus, by the �rst order

conditions for convexity,

f(u) > f(v) +∇f(v)>(u− v)

for any u,v ∈ Rn++ with u 6= v. Feeding in f(v) into each

side of the inequality, we obtain

n∑
i=1

ui log ui >

n∑
i=1

vi log vi +

n∑
i=1

(log vi + 1)(ui − vi)

=

n∑
i=1

(ui log vi + ui − vi)

Re-arranging gives the required result.

3. To prove the �rst statement, consider that f and g are both

positive and convex. Thus, for any x and y, and any θ ∈ [0, 1]
and z = θx + (1− θ)y, we have

f(z)g(z) ≤ (θf(x) + (1− θ)f(y)) (θg(x) + (1− θ)g(y))

= θf(x)g(x) + (1− θ)f(y)g(y) + θ(1− θ) (f(y − f(x)) (g(x)− g(y))

The last term is negative if f and g are either both increasing

or both decreasing. Since this is the case, we �nd that fg is

indeed convex.

For second statement, simply reverse the inequalities above.

For the third, note that 1/g is convex, positive and increas-

ing, so that the result follows from the �rst statement.

� � �

Question 2 (**Support and Indicator Func-
tions)

Consider a set S . We de�ne the following two functions

• The indicator function, IS : Rn → R ∪ {∞} is de�ned as

IS (x) =

{
0 x ∈ S

∞ x /∈ S

• The support function, σS : Rn ∪ {∞} is de�ned as

σS (a) = sup
x∈S
{a · x} = sup

x∈Rn
{a · x− IS (x)}

3To show this, consider that if
f(x) = x log x, then f ′′(x) = 1/x.
This is clearly strictly positive for
strictly positive x.
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Let S̄C be the smallest closed convex set containing S , and for

the purposes of this question, assume S ⊆ Rn. Show that

S̄C = {x ∈ Rn : a · x ≤ σS (a) for all a ∈ Rn} (1)

and that

IS̄C
(x) = sup

a∈Rn
{a · x− σS (a)}

Solution

Before we begin, let's take a step back to review session 1, when

we looked at dual cones and polar sets. We saw that both these

constructs basically contained all the hyperplanes that separated

a given set from every point outside the set. However, because of

the particular structure of these dual sets (in particular, we were

constraining ourselves to hyperplanes a · x ≤ b with either 0 RHS

or strictly non-zero RHS), we were constrained to describing either

cones or sets containing the origin in their interior.

This hardly satisfactory � surely there must be a way to describe

all sets based on their supporting hyperplanes. How might we do

this? We saw that the reason dual cones and polar sets couldn't

really do the job was because of our constraints on the RHS of the

hyperplanes. A pretty good place to begin, therefore, might be to

relax that structure and allow hyperplanes with any right-hand-

side. This is precisely what we'll be doing here.

In particular, consider the de�nition of the support function. All

it does is take a vector a (that de�nes a hyperplane) and then tries

to �nd the RHS that will �t that hyperplane as snugly as possible

against the set (by maximizing a·x for all points in the set). Thus,

for each a, the support function tells us that the smallest halfspace

with gradient a that contains the set is

a · x ≤ σS (a)

Little wonder, therefore, that if we know σ, we can reconstruct

the closest closed convex set that contains S � σ basically tells us

every halfspace that contains S ; so of course, their intersection

(given by equation 1) gives S̄C . We have found a way to encode

every hyperplane that supports any convex set!

Now that we've done the hard work of understanding what's going

on, let's prove everything rigorously!

To begin with, we'll show that

σS (a) = σS̄C
(a)

(Recall that S̄C is the smallest closed convex set containing S ).

3



• σS (a) ≤ σS̄C
(a) This side is easier. Recall that the de�-

nition of the support function involves a supremum over all

x in the set in question. Since we know that S ⊆ S̄C , it

is clear that when we take supx∈S̄C
, we're including every x

that we include when we take supx∈S , and more. Thus, the

former statement must be larger.

• σS (a) ≥ σS̄C
(a) Imagine that σS̄C

(a) = k < ∞. 4This

means that there is a x̄C ∈ S̄C such that

a · x̄C = k

This means that for any small δ > 0, there exists a xC ∈ SC

(notice we're now considering a set that might be open) with
5

a · xC ≥ k − δ (2)

However, since xC ∈ SC , it must be a �nite convex combi-

nation of points in S . Thus, we can write

xC =
n∑
i=1

λix
i λi ∈ [0, 1],

∑
λi = 1,xi ∈ S (3)

And so feeding 3 into 2, we �nd that for any small δ > 0,

n∑
i=1

λi(a · xi) ≥ k − δ

Now, clearly,

k − δ ≤
n∑
i=1

λi(a · xi) ≤

(
n∑
i=1

λi

)
max
i

(a · xi) = max
i

(a · xi)

And so there must be at least one xi ∈ S such that

a · xi ≥ k − δ

Thus, letting δ → 0, we �nd that

σS (a) ≥ k = σS̄C
(a)

Having established that σS (a) = σS̄C
(a), we can restrict ourselves

to closed convex sets C . We need to show that

C = {x ∈ Rn : a · x ≤ σC (a) for all a ∈ Rn}

We can re-write this as

C =

{
x ∈ Rn : a · x ≤ sup

x∈C
{a · x} for all a ∈ Rn

}
In what follows, we will be referring to the set on the right-hand-

side of this equation as �RHS�. So we need to prove that C = RHS.

We do this in two steps

4The proof for the case in which the
support function is in�nite is simi-
lar, and in fact slightly easier.

5For the pedants out there, here's
a proof � consider that since x̄C ∈
S̄C , then for any δ > 0, there exists
a ball B = Bδ/‖a‖(x̄C) such that
B ∩SC 6= ϕ. Take some xC ∈ B ∩
SC . Consider, then, that if we let
d = x̄C−xC , we have ‖d‖ ≤ δ/‖a‖.
As such,

a · xC = a · x− a · d
= k − a · d

≥ k − ‖a‖
δ

‖a‖
= k − δ
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• C ⊆ RHS This is somewhat obvious. If c ∈ C , then it's

obvious that a · c ≤ supx∈C {a · x} for all a, because x = c
is a valid assignment in the optimization problem. Thus,

if we take the supremum over all possible x, we must get

something bigger.

• RHS ⊆ C Slightly harder � let's prove it the standard way.

Suppose c /∈ C . We need to show that c /∈ RHS. To do this,

note that since c /∈ C , and C is assumed to be convex and

closed, there is a strictly separating hyperplane a such that

a · c > a · x for all x ∈ C

Taking the supremum over x on the RHS,

a · c > sup
x∈C
{a · x}

We have therefore found at least one a for which a · c >
supx∈C {a · x}. Thus, by de�nition, we must have c /∈ RHS.

Our last step is to prove that

IS̄C
(x) = sup

a∈Rn
{a · x− σS (a)}

We showed above that C was precisely that set of points whose

dot product with a is ≤ σC (a) for all a. Thus,

• If x ∈ C , then a · x ≤ σC (a) for all a, and so the maximum

the supremum on the right-hand side could reach is 0 (when

a ·x = σC (a)). And we know that it will reach 0, because it

does it at a = 0.

• If x /∈ C , there must be some a for which a · x > σS (a) =
supx∈C {a · x}. By multiplying a by some arbitrarily large

constant λ, we can make this di�erence as large as we want,

and therefore make supa∈Rn {a · x− σS (a)} in�nite.

Thus, we have shown that

sup
a∈Rn

{a · x− σS (a)} =

{
0 x ∈ S

∞ x /∈ S

It is therefore equal to the indicator function of C .

� � �

Question 3 (***Conjugate functions)

Recall that the conjugate function of a proper function f is de�ned

by

f∗(x) = sup
y
{x · y − f(y)}

Answer the following questions
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• Show that f∗ is convex, whether f is convex or not.

• Show that f∗∗ is the largest closed convex function that lies

below f .

• Prove Frenchel's Inequality

a · x ≤ f(x) + f∗(a)

and use it to prove Young's Inequality, which states that for

any non-negative real numbers a and b, and any p, q > 0,
with p−1 + q−1 = 1

ab ≤ ap

p
+
bq

q

Solution

Let's �rst spend some time understanding what conjugate func-

tions are. All it appears you're doing when you work out f(a) is

taking a line with gradient a that passes through the origin, and

trying to �nd the point at which that line and the curve f(x) are
as close to each other as possible. Simple logic 6 should quickly

convince you that this occurs at the point y for which ∇f(y) = a.
Another way of looking at the quantity f∗(a), therefore, is that we
generate it by taking a hyperplane with gradient a, and push it as

snugly as possible to the curve. The intercept of the hyperplane is

then −f∗(a). This is illustrated in �gure 1.

Now consider that concept � taking a hyperplane and pushing it up

again a set. That's something we've seen before when we studied

support functions. Is there a relation between convex conjugates

and support functions? Indeed there is � the convex conjugate of

f is in fact precisely the support function of the epigraph of f , as
follows

f∗(a) = sup
y
{a · y − f(y)}

= sup
y

{[
a
−1

]
·
[

y
f(y)

]}
= sup

z∈epi(f)

{[
a
−1

]
· z
}

= σepi(f)

([
a
−1

])
where for any function f : Rn → R, we de�ne

epi(f) = {(x, t) : x ∈ Rn, f(x ≤ t} ⊆ Rn+1

This is also illustrated in �gure 1.

6Or, if you don't like logic, simply
di�erentiate a·y−f(y) with respect
to y and set it to 0:

a−∇f(y) = 0

So we see that the supremum in the
convex conjugate is indeed obtained
at the point y at which ∇f(y) = a

epi(f)

−f∗(a)

y

(a,−1)

∇f(y) = a

Figure 1: The convex conjugate f∗(a)
takes a hyperplane with gradient a and
tries to �t it as snugly as possible be-
low the function f . Another way to
look at this is that the convex conju-
gate is none other than the support
function of the epigraph of f at the
point (a,−1)>. Note for future refer-
ence that the equation of the line illus-
trated in this diagram (ie: the tangent
hyperplane with gradient a) is precisely
y = a · x + (−f∗(x)).
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Let's now consider the statement that f∗∗ is the largest closed

convex function smaller than f . Why does that make sense intu-

itively? First, consider that

f∗∗(x) = sup
a
{a · x− f∗(a)}

But consider �gure 1 again. We mentioned in the caption there

that a ·x− f∗(a) is precisely the height at x of the tangent hyper-

plane to f with gradient a. Thus, we can write this as

f∗∗(x) = sup
Supporting hyperplanes of epi(f)

{Height of hyperplane at x}

As illustrated in �gure 2, this is clearly equal to the value at x of

the largest closed convex function that lies below f .

Finally, consider Frenchel's Inequality. In light of everything we've

seen, it's almost trivial. Re-arranging it, we obtain

a · x− f∗(a) ≤ f(x)

We have already see that the LHS is the hyperplane with gradient

p supporting the epigraph of f . Since it's a supporting hyperplane,
it's obvious it lies below f everywhere, hence the inequality.

OK � now it's time to prove everything rigorously! First, the fact

f∗ is convex. Consider two vectors p and q, and a λ ∈ [0, 1]. Then
construct r = λp + (1− λ)q. We �nd that

f∗(r) = f∗ (λp + (1− λ)q)

= sup
y
{[λp + (1− λ)q] · y − f(y)}

= sup
y
{λ(p · y) + (1− λ)(q · y)− f(y)}

= sup
y
{λ [p · y − f(y)] + (1− λ) [q · y − f(y)]}

≤
7

λ sup
y
{p · y − f(y)}+ (1− λ) sup

y
{q · y − f(y)}

= λf∗(p) + (1− λ)f∗(q)

We made no assumption on the convexity of f in the above. Thus,

f∗ is indeed convex regardless of whether f is.

Now, let f̃(x) be the largest closed convex function that lies below

f . Let's prove that f∗∗ = f̃ . We do this in two parts

• f∗∗(x) ≤ f̃(x) Consider that

f∗∗(x) = sup
z

{
z · x− sup

y
(z · y − f(y))

}
(4)

Let's consider two cases:

x

Figure 2: This diagram illustrates a
number of hyperplanes that support
epi(f). The heights of those hyper-
planes at the point x are indicated by
blobs. Clearly, the highest such blob
over all hyperplanes (in red in the dia-
gram) is none other than the value of
the largest closed convex function that
lies below f .

7This step follows because in the
previous line, we are maximizing the
entire expression ove ra single y. In
other words, we pick one y that
must maximize the whole thing. In
this line, we are splitting the spre-
mum, and we allow each individual
expression to be maximized by its
own, individual y. Clearly, I could
choose to make these two y's equal,
but I also have more freedom to do
something else. Thus, the result
must be at least larger.
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� If x is such that f(x) = f̃(x), then simply set y = x
in the infemum. The RHS then becomes f(x). Clearly,
the actual result will be smaller, because we are �nding

the inf over all y. Thus, f∗∗(x) ≤ f̃(x).

� If x is such that f(x) > f̃(x), then this means that

f(x) overestimates the convex function f̃ at that point.

Let's now de�ne the set O, which contains all (a,b, λ)
such that

∗ x lies on the line between a and b, and the vector

λ describes how far along that line x lies. In other

words,

x = λa + (1− λ)b

∗ f overestimates f̃ on the entire line between a and

b. In other words

f(x) > µf(a) + (1− µ)b for all µ ∈ [0, 1]

Since f(x) > f̃(x), O must be non-empty.

Clearly, f̃ will try to `�x' this lack of convexity, and it

will do it by taking the value of the lowest straight line

between (a, f(a)) and (b, f(b)). Thus, letting

(ã, b̃, λ̃) = arginf(a,b,λ)∈O {λf(a) + (1− λ)f(b)}

We have that

f̃(x) = λ̃f(ã) + (1− λ̃)f(b̃) (5)

Now consider equation 4 again. We'll put the following

value of y in there

y =

{
ã if z · (b̃− ã) ≤ f(b̃)− f(ã)

b̃ if z · (b̃− ã) ≥ f(b̃)− f(ã)

By multiplying the �rst condition by (1 − λ) and the

second condition −λ, we �nd that this is equivalent to

y =

{
a if z · (x− ã) ≤ (1− λ̃) (f(b)− f(ã))

b if z · (x− b̃) ≤ λ̃
(
f(ã)− f(b̃)

)
Feeding into equation 4, the RHS becomes f̃(x), as

given in equation 5. Thus, we �nd that f∗∗ ≤ f̃ .

• f∗∗(x) ≥ f̃(x) This side is signi�cantly harder! Suppose

that it is not true � that f∗∗(x) < f(x) at a given point x.
By the strictly Separating Hyperplane Theorem, applied, to
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the epigraph of f̃ , there exists a vector g and a number γ
such that

[y, α] ·
[
g
γ

]
< [x, f∗∗(x)] ·

[
g
γ

]
∀ [y, α] ∈ epi(f̃)

Now, consider that

� We must have γ ≤ 0. Otherwise, we would be able to

increase α above to in�nity8and make the LHS arbi-

trarily large. This is impossible since the RHS is �nite.

� We must have γ 6= 0, because if we had γ = 0, the
inequality would read

y · g < x · g ∀y

This is clearly nonsense; feeding y = x into the LHS

violates the inequality.

Thus,

γ < 0

As such, we can divide both sides of the inequality by |γ|,
denote z̃ = g/γ, and obtain

[y, α] ·
[

z̃
−1

]
< [x, f∗∗(x)] ·

[
z̃
−1

]
∀ [y, α] ∈ epi(f̃)

Expanding the dot product, assuming α = f(y) (which keeps
[y, α] ∈ epi(f̃)), and taking the supremum over the RHS

sup
y
{y · z̃− f(y)} < x · z̃− f∗∗(x)

Re-arranging, we �nd that

f∗∗(x) < z̃ · x− sup
y
{z̃ · y − f(y)}

We have therefore found a value of z̃ for which the RHS

is greater than f∗∗(x). This, however, is a contradiction,

because f∗∗(x) is given by taking the supremum of the RHS

over all z (see equation 4).

Written in full, Frenchel's Inequality states that

p · x ≤ f(x) + sup
y
{p · y − f(y)}

Setting y = x in the supremum, the RHS becomes p · x. Clearly,
this is less than or equal to what the RHS could attain at its

supremum, and this proves the inequality.

To prove Young's Inequality, consider the function

f(x) =
xp

p

8Recall that the de�nition of epi(f̃)
admits any [y, α] such that α ≥
f(y). Thus, increasing α to in�nity
keeps the vector in the epigraph.
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Its convex conjugate is given by

f∗(x) = sup
y

{
xy − yp

p

}
Di�erentiating with respect to y and setting to 0, we �nd that this

occurs when

x− yp−1 = 0⇒ y = x1/(p−1)

Feeding this back into the above, we �nd that

f∗(x) = x
1
p−1

+1 − 1

p
x

p
p−1

Re-arranging

f∗(x) = x
p
p−1 − 1

p
x

p
p−1

Now, note that since p−1 + q−1 = 1, we have that q = p
p−1 . Thus

f∗(x) = xq
(

1− 1

p

)
Thus

f∗(x) =
xq

q

Feeding this into Fenchel's Inequality directly gives Young's In-

equality.

� � �

Question 4 (***Risk Measures)

4Consider a set of possible future scenarios {1, . . . , n}. A portfolio

is de�ned by a vector x ∈ Rn. If scenario i occurs, the pro�t of the
portfolio is xi (if xi < 0, we interpret this as a loss). We de�ne 1
to be `cash' � a portfolio that is worth 1 in every future scenario.

We de�ne 0 to be the empty portfolio � one that is worth nothing

in every future scenario.

We wish to quantify the level of risk of a portfolio. To this end,

we say that a function ρ : Rn → R is a coherent risk measure if

it satis�es the four axioms below. A coherent risk measure can

be interpreted as a capital requirement � the amount of money an

agent might prudently set aside in order to cover potential losses

associated with portfolio x.

Monotonicity If x ≤ y, then ρ(x) ≥ ρ(y). In other words, if one

portfolio is more pro�table than another in every scenario,

it should require less capital.

4From the DRO Qualifying Exam, 2010
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Cash Invariance For any t ∈ R, ρ(x + t1) = ρ(x) − t. In other

words, injecting a quantity of cash into the portfolio com-

mensurately reduces the capital requirement.

Sub-additivity ρ(x + y) ≤ ρ(x) + ρ(y). In other words, diversi-

�cation is good � the combination of two portfolios' capital

requirement should be no more than the sum of the individ-

ual capital requirements.

Positive Homogeneity For any λ ∈ R with λ ≥ 0, ρ(λx) =
λρ(x). In other words, the capital requirement scales indi-

vidually with the size of the portfolio.

Part A

Suppose that ρ is a coherent risk measure. Prove that it is convex

and that ρ(t1) = −t for all t ∈ R.

Solution

Consider two portfolios x,y, and a λ ∈ [0, 1]. Let z = λx+(1−λ)y.
Then

ρ(z) = ρ (λx + (1− λ)y)

≤Axiom 3 ρ(λx) + ρ((1− λ)y)

=Axiom 4 λρ(x) + (1− λ)ρ(y)

Thus, ρ is indeed convex.

Consider further that

ρ(t1) = ρ(0 + t1)

=Axiom 2 ρ(0)− t
=Axiom 4 0ρ(0)− t

= −t

Part B

An acceptance set A ⊂ Rn is a collection of portfolios that satis�es

• A is a closed convex cone.

• −1 /∈ A .

• Rn+ ⊂ A .

Suppose that A is an acceptance set. For x ∈ Rn, de�ne

ρ(x) = inf {t ∈ R : t1 + x ∈ A } (6)

Prove that ρ is a coherent risk measure.
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Here, ρ(x) can be interpreted as the the minimum quantity of cash

which must be injected into the portfolio x to drive it into some

set of desirable portfolios.

Solution

Let's consider each of the four axioms

Monotonicity : If x ≤ y, then y = x + z, with z ∈ Rn+. Now,

consider that

ρ(y) = inf {t : t1 + y ∈ A } (7)

= inf {t : t1 + x + z ∈ A }

Now, consider the vector t1 + x + z when t = ρ(x). In that

case

• We know that t1 + x ∈ A , by de�nition of ρ(x).

• We also have z ∈ A because Rn+ ⊂ A .

Thus, ρ(x)1 + x + z is the sum of two vectors in the cone

A , and is therefore in the cone itself9. As such, we see that

t = ρ(x) is feasible in the problem in line 7. Thus, ρ(y) must

be less than or equal to ρ(x).

Cash invariance : Consider that

ρ(x + t1) = inf {τ ∈ R : τ1 + x + t1 ∈ A }
= inf {τ ∈ R : (τ + t)1 + x ∈ A }
= inf {γ − t ∈ R : γ1 + x ∈ A }
= inf {γ ∈ R : γ1 + x ∈ A } − t
= ρ(x)− t

Sub-additivity : Consider that

ρ(x) + ρ(y) = inf
t1
{t1 : t11 + x ∈ A }

+ inf
t2
{t2 : t21 + x ∈ A }

≥
10

inf
t1+t2

{t1 + t2 : (t1 + t2)1 + x + y ∈ A }

= inf
w
{w : w1 + x + y ∈ A }

= ρ(x + y)

9To see why, consider that for a con-
vex cone A , if x,y ∈ A , then by the
cone property 2x, 2y ∈ A , and by
convexity 1

2
2x + 1

2
2y = x + y ∈ A .

10To see why, consider that if we
have a t1 and a t2 feasible for the
line above, then t11 + x ∈ A and
t21 + y ∈ A . As such, as we saw
in the previous sidenote, the sum of
these two vectors, (t1+t2)1+x+y ∈
A . Thus, the solution to the previ-
ous line is feasible in this line, so by
allowing the joint optimization, we
can only do better and therefore re-

duce our optimal value.
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Positive homogeneity : Consider that

ρ(λx) = inf {t : t1 + λx ∈ A }

= inf

{
t : λ

[
t

λ
1 + x

]
∈ A

}
=

11
inf

{
t :

t

λ
1 + x ∈ A

}
= inf {λw : w1 + x ∈ A }
= λρ(x)

ρ therefore satis�es all four axioms of a coherent risk measure.

Part C

Suppose that ρ is a coherent risk measure. De�ne the set of port-

folios

A = {x ∈ Rn : ρ(x) ≤ 0}

Prove that A is an acceptance set, and that with this choice of

acceptance set, ρ can be written in the form given in equation 6.

Solution

Let us show that A satis�es all the properties of an acceptance

set outlined in the previous part

A is a cone : First, consider that

x ∈ A ⇔ ρ(x) ≤ 0

However, by the de�nition of a coherent risk measure, ρ(αx) =
αρ(x) for all α ≥ 0. Thus, for any α ≥ 0,

x ∈ A ⇔ ρ(x) ≤ 0⇔ ρ(αx) ≤ 0⇔ αx ∈ A

Thus, A is indeed a cone.

A is convex : Consider x,y ∈ A . By de�nition of A , we have

that ρ(x), ρ(y) ≤ 0. Now consider λ ∈ [0, 1] and consider

z = λx + (1− λ)y. Since ρ is convex, we have that

ρ(z) ≤ λρ(x) + (1− λ)ρ(y) ≤ 0

Thus, z ∈ A , and A is convex.

−1 /∈ A : We showed in part (A) that ρ(−1) = 1 > 0. Thus,

−1 /∈ A .

Rn+ ⊂ A : We showed in part (A) that ρ(0) = 0. Now take an x ∈
Rn+. Clearly, 0 ≤ x. As such, by Axiom 1, ρ(x) ≤ ρ(0) = 0,
and so x ∈ A .

11Here, we are using the fact that if
A is a cone, λx ∈ A ⇔ x ∈ A .
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A is closed : This boils down to whether ρ is continuous. This

can be shown using positive homogeneity (axiom 4).

Now, having established that A is an acceptance cone, let's see

what happens when we use this acceptance set in expression 6 for

ρ(x)

ρ̃(x) = inf {t ∈ R : t1 + x ∈ A }
= inf {t ∈ R : ρ(t1 + x) ≤ 0}
= inf {t ∈ R : ρ(x)− t ≤ 0}
= inf {t ∈ R : ρ(x) ≤ t}
= ρ(x)

Part D

De�ne P to be the probability simplex over a set of future sce-

narios

P = {q ∈ Rn : q ≥ 0,1 · q = 1}

Given a distribution q ∈P and a portfolio x ∈ Rn, de�ne Eq[x] =
q · x to be the expected pro�t of x under the distribution q.

Suppose that ρ is a coherent risk measure. Prove that there exists

a closed convex subset Q ⊆P of probability distributions so that,

for all x ∈ Rn,
ρ(x) = sup

q∈Q
Eq[−x]

Here, ρ(x) can be interpreted as the worst-case expected loss of

the portfolio x, over some set of probability distributions.

Solution

Consider some coherent risk measure ρ, and consider its convex

conjugate

ρ∗(a) = sup
y
{a · y − ρ(y)}

Now, note that

• If any component of a is positive, increasing that compo-

nent of y can only make the expression in the supremum

larger. Indeed, increasing that component of y decreases ρ
(by monotonicity) and certainly increases a · y.

Thus, for any a with any positive component, ρ∗(a)∞.

• Now assume that all components of a are negative, and let

the sum of the components of a be denoted by a+.

14



Now consider what happens what happens to the expression

in the supremum if we add α1 to it, for some α ∈ R

a · (y + α1)− ρ(y + 1) = a · y + αa+ − ρ(y) + α

= a · y − ρ(y) + α(1 + a+)

Thus, if a+ ∈ (0,−1), we can blow this expression up to

in�nity by making α arbitrarily large and positive, and if

a+ ∈ (−1,−∞], we can blow this expression up to in�nity by

making α arbitrarily large and negative. Either way, unless

a+ = −1, ρ∗(a)∞.

We therefore have that

ρ∗(a) =

{
0 for a ∈ Q̃

∞ otherwise

where, so far, all we know about Q̃ is that

Q̃ ⊆ {x : x ≤ 0,1 · x = −1} = −P

Let us now show that Q is convex and closed

Convex : Take two vectors q1,q2 ∈ ˜setQ. This means that for

each of these vectors, there is no y that makes the expression

in the supremum above strictly positive12 . Now consider a

λ ∈ [0, 1] and a z = λq1 + (1− λ)q2. We then have

a · z− ρ(z) = a · (λq1 + (1− λ)q2)− ρ (λq1 + (1− λ)q2)

≤ a · (λq1 + (1− λ)q2)− ρ (λq1) + ρ ((1− λ)q2)

= λ (a · q1 + ρ(q1)) + (1− λ) (a · q2 + ρ(q2))

≤ 0

Thus, z ∈ Q̃ and Q̃ is convex.

Closed : All the inequalities de�ning Q̃ are not strict. It can

therefore easily be shown that any sequence of vectors in Q̃
tends to a vector in Q̃.

Finally, consider the convex conjugate of ρ∗(a). Since we estab-

lished that ρ is a convex function, this biconjugate will give us the

original function back. Thus

ρ(x) = ρ∗∗(x)

= sup
a

{
a · x− IQ̃(a)

}
= sup

a∈Q̃

{a · x}

= sup
q∈Q
{−q · x}

= sup
q∈Q

Eq[−x]

12Suppose there was a y for which

q1 · y − ρ(y) > 0

Then by positive homogeneity, we
could multiply y by an arbitrar-
ily large positive constant α to ob-
tain α (q1 · y − ρ(y)) → ∞. This
would make ρ(q1) =∞, contradict-

ing q1 ∈ Q̃. A similar argument
applies to q2.
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where Q = −Q̃. Since we know −Q ⊂ −P and was closed and

convex, we must also have that Q ⊂P and that Q is closed and

convex. This proves our proposition.
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