
Convex Optimization

Review Session 1

This review session will cover the material on convex sets from

lectures. The material is interesting in that the concepts involved

aren't the most di�cult (mostly the de�nition of a convex set and

the separating hyperplane theorem), but the application of these

concepts can be �endishly di�cult, depending on the problem.

As such, this �rst review session will focus mostly on solving var-

ious problems on these topics.

That said, there is one quick topic I want to review, and that's the

topic of hyperplanes and halfspaces. It is often useful, when solving

problem, to be able to visualize the halfspace in question, and I

don't know about you, but I've always found it �endishly di�cult

to actually visualize a halfspace based on the vector de�nition.

Here's a guide that should make it easier

Having said that, let's get going with the questions!

Question 1 (*Convex Sets)

1Which of the following sets are convex?

1. The set of points closer to one set than another

{x : dist(x,S ) ≤ dist(x,T )}

where S ,T ⊆ Rn and

dist(x,S ) = infz∈S {‖x− z‖2}

2. The set {x : x+ S2 ⊆ S1}, where S1,S2 ⊆ Rn and S1 is

convex.

3. The set of point whose distance to a does not exceed a �xed

fraction θ of the distance to b

{x : ‖x− a‖2 ≤ θ‖x− b‖2}
1Partly inspired by Exercise 2.12 in Boyd.
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You can assume a 6= b and θ ∈ [0, 1].

4. Let x ∈ Rm be the set of coe�cients in a Fourier series

px(t) =
∑m

k=1 xk cos(kt). The set of interest is the set of

coe�cients which ensure |px(t)| less than or equal 1 for all

|t| ≤ π
3 {

x ∈ Rm : |px(t)| ≤ 1 for |t| ≤ π

3

}
Solution

1. Not necessarily convex. Consider

S = {−1, 1} T = {0}

The points −1 and 1 are closer to S , but their midpoint is

closer to T .

2. Intuitively, what we're doing here is placing the set S2 onto

S1, and �nding the set of vectors over which we can move

S2 without rotating it while keeping it within S1. Since S1

is convex, it makes sense that this generated set would be

too.

Let's prove this. Consider that

S = {x : x+ S2 ⊆ S1}
= {x : x+ y ∈ S1 ∀y ∈ S2}
=

⋂
y∈S2

{x : x+ y ∈ S1}

=
⋂

y∈S2

(S1 − y)

Each of the sets in the intersection is an a�ne transforma-

tion of S1, and so since S1 is convex, so is each set in the

intersection. Thus, we have an in�nite intersection of convex

sets, which is also convex.

3. Let's engage in some algebraic hocus-pocus

S = {x : ‖x− a‖2 ≤ θ‖x− b‖2}
=

{
x : ‖x− a‖22 ≤ θ2‖x− b‖22

}
=

{
x : (1− θ2)‖x‖22 + 2(θ2b− a) · x+ ‖a‖22 − θ2‖b‖22 ≤ 0

}
If θ = 1, the quadratic term in x disappears, and we're left

with a (convex) hyperplane. If not, let k = 2(θ2b− a). We

can then write the above as

S =
{
x : ‖x− k‖22 ≤ Constant

∥∥
This is a ball, which is also convex. Thus, S is convex.
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4. Consider that the set in question can be written as⋂
|t|≤π

3

{x ∈ Rm : |p(t)| ≤ 1}

Consider, however, that we can write

p(t) = (cos(t), . . . , cos(mt)>x

As such, we can write the above as⋂
|t|≤π

3

{
x ∈ Rm : −1 ≤ (cos(t), . . . , cos(mt)>x ≤ 1

}
Each of the sets is the intersection of two hyperplanes (since

the cosine vector is constant) and therefore convex. Thus,

we have an in�nite intersection of convex sets, which is also

convex.

� � �

Question 2 (*Midpoint convexity)

2A set C is midpoint convex if

a,b ∈ C ⇒ a+ b

2
∈ C

Clearly, all convex sets are midpoint convex. Show that under a

mild condition that you should specify, midpoint convexity implies

convexity.

Solution

Let's �rst understand this intuitively. We need to show that given

any two points in the set, any point on the line between those

two sets is also in the set. Assuming we know the set is midpoint

convex, one intuitive way to do this is simply to go halfway along

the line. Then halfway again. Then again, etc. . . , until we get to

the desired point in the limit. This last word should cue you in to

the condition required � we need the limit of a set of point to be

in the set � in other words, we need the set to be closed.

Thus, we'll prove that if a set C is closed and given a,b ∈ C and

θ ∈ [0, 1],
1

2
(a+ b) ∈ C ⇒ θa+ (1− θ)b ∈ C

Now consider performing m bisections on the line between a and

b, described by the vector g ∈ {0, 1}m, where

gk =

{
1 If bisection number m− k + 1 is towards a

0 If that bisection is towards b

2Exercise 2.3 in Boyd.
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The vector we will reach after these bisections is

zgm = γgma+ (1− γgm)b ∈ C

where

γgm =
m∑
k=1

gk2
−k

and this vector must be in C by midpoint convexity.

Now it is clear that we can �nd a g̃ so that

lim
m→∞

γg̃m = θ

We would then have

lim
m→∞

zg̃m = θa+ (1− θ)b

We have therefore found a sequence that tends to θa+(1− θ)b in

which each element is in the set. Assuming the set is closed, the

limit must also be in the set. Thus, the set is convex.

� � �

Question 3 (*Convex Hulls)

3 Show that the convex hull of a set S (denoted conv(S )) is the
intersection of all convex sets that contain S .

Solution

Let C be the set of convex sets containing S

C = {C : C is convex,S ⊆ C }

Clearly, conv(S ) ∈ C, and so⋂
C∈C

C ⊆ conv(S )

To prove the other direction, we need to show that every point in

the convex hull conv(S ) must also appear in every convex set in

C (and therefore in their intersections). This is trivial, however,

because

• Every point in conv(S ) is a convex combination of points

in S .

• Every set in C must contain every point in S .

3Exercise 2.4 in Boyd.
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• Every set in C must be convex and therefore contain every

convex combination of points in S .

Thus, every point in conv(S ) is also in every set in C. Thus,

conv(S ) ⊆
⋂

C∈C
C

Thus,

conv(S ) =
⋂

C∈C
C

� � �

Question 4 (**Using Helly's Theorem)

4Let X = {x1, . . . ,xk} ⊂ R2, k > 2. Using Helly's Theorem,

devise a method to compute the smallest covering radius for X
e�ciently (ie: with complexity that grows polynomially with k).

Recall that the smallest covering radius of X (denoted r∗X) is the
radius of the smallest circle that contains all points in X.

Solution

First note that

r∗X = min

{
r :

k⋂
i=1

Br(xi) 6= ϕ

}

= sup

{
r :

k⋂
i=1

Br(xi) = ϕ

}

(Where Br(x) = {y : ‖y − x‖ ≤ r}).

Consider the second formulation above, and note that

r∗X > ρ ⇔
k⋂
i=1

Bρ(xi) = ϕ

⇔ ∃{i1, i2, i3} s.t. Bρ(xi1) ∩Bρ(xi2) ∩Bρ(xi3) = ϕ

⇔ ∃{i1, i2, i3} s.t. r∗{xi1 ,xi2 ,xi3} > ρ

(The second step follows by Helly's Theorem).

Thus, we have that

r∗X = max
{
r∗{xi1 ,xi2 ,xi3}

: {i1, i2, i3} ∈ {1, 2, · · · , k}, i1 6= i2 6= i3

}
4Taken from a Homework from Garud Iyengar's Convex Optimization

course, Spring 2011
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The number of sets of three such points to check is

k(k − 1)(k − 2)

3!
= 1

6k
3 − 3k2 + 2k

This is clearly polynomial in k. Furthermore, for a triple T =
{xi1 ,xi2 ,xi3}, the smallest covering radius is simple to calculate

and given by

r∗T = max
{
1
2‖x1 − x2‖, 12‖x2 − x3‖, 12‖x3 − x1‖

1
2‖x1 − 1

3(x1 + x2 + x3)
}

That is, the maximum of

• Half the distance between any two of the three points.

• The distance between each point and the center of the tri-

angle formed by the three points.

This is illustrated in �gure 1.

� � �

Question 5 (**Farkas' Lemma)

Prove Farkas' Lemma without using linear programming duality.

Recall that Farkas' Lemma states that, given A ∈ Rm×n and b ∈
Rm, exactly one of the following two statements is true

1. There exists an x ∈ Rn with x ≥ 0 such that Ax = b.

2. There exists a y ∈ Rm with b · y < 0 such that A>y ≥ 0.

Solution

To answer this question, we need to reformulate the two statements

above geometrically. First, de�ne the following cone

C = {z : z = Ax,x ≥ 0}

It is the cone generated by the columns of A. Now, note that the
two statements above can be re-written as follows:

1. The �rst statement states that b consists of a positive linear

combination of the columns of A � in other words, that b ∈
C .

2. The second statement states that there is a vector y that

makes an acute angle with with every column of A (the dot

product of every column of A with y is positive), but that

makes an obtuse angle with b.

All we need to do is show that the second statement is equivalent

to the statement b /∈ C , and we're home, because b is in C or out

of it, so only one of the two statements above can be true.

x1

x2
x3

‖x1 − x2‖

x1

x2

x3

‖x1 − 1
3(x1 + x2 + x3)‖

Figure 1: Depending on the con�gu-
ration of the three points, the minimum
covering radius of the three points can
take one of four di�erent values.
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• Statement 2 ⇒ Outside C Suppose the vector b satis�es

statement 2, and consider an arbitrary point c ∈ C , with

c = Ax. We then have

c · y = c>y = x>A>y = x ·A>y ≥ 0

(The last step follows because A>y ≥ 0 by statement 2, and

so we have the dot product of two positive vectors).

However, since b satis�es the second statement above, we

know that b · y < 0. As such

b · y < c · y ∀c ∈ C

Thus, y is a hyperplane that strictly separates b from C .

Clearly, therefore, b /∈ C .

• Outside C ⇒ Statement 2 This direction is harder, and will

require the Separating Hyperplane Theorem.

Suppose b /∈ C . Since C is convex1and closed, there is a

strictly separating hyperplane y such that

b · y < c · y ∀c ∈ C (1)

Now, consider

� We have 0 ∈ C . Thus, putting c = 0 in equation 1, we

�nd that

b · y < 0

� Consider the RHS of equation 1, and imagine that we

had some c ∈ C such that c · y < 0. By the de�nition

of a cone, we can multiply c by any arbitrary positive

constant and still keep it in the cone. By doing this

with an arbitrarily large constant, it becomes clear that

the RHS of equation 1 would become unbounded below.

This is clearly impossible, since the LHS is �nite. Thus,

we must have

c · y ≥ 0 ∀c ∈ C (2)

Now, each column of A is, in its own right, a mem-

ber of the cone C . Thus, by successively setting c in

equation 2 to each column of A, we �nd that the inner

product of each column with y is positive. Thus,

A>y ≥ 0

We have therefore shown that b satis�es both the conditions

in statement 2.

1If z1 = Ax1 and z2 = Ax2 are
both in C , then for λ ∈ [0, 1], z3 =
λz1 + (1 − λ)z2 must also be in C ,
because z3 = A (λx1 + (1− λ)x2),
and since x1 and x2 are both ≥ 0,
so is λx1 + (1− λ)x2
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� � �

Question 6 (*Dual Cones)

A cone K is said to be proper if

• K is convex.

• K is closed.

• K has a non-empty interior.

• K is pointed (ie: x ∈ K ,−x ∈ K ⇒ x = 0).

Consider a proper cone K . The dual cone of setK, denoted K ∗,
is given by

K ∗ = {y : x · y ≥ 0 for all x ∈ K }

We also de�ne a generalized inequality with respect to the cone K
as follows

x �K y⇔ y − x ∈ K

x �K y⇔ y − x ∈ int(K )

Given these de�nitions

• Show that K ∗∗ = K .

• Consider a set C (not necessarily convex). The element x is

the minimum element of C with respect to �K if and only

if y �K x for every y ∈ C .

Show that x is the minimum element of C if and only if for

all g �K ∗ 0, x is the unique minimizer of g · z over z ∈ C .

Solution

Let's �rst crunch through the proof, and then using the insights

gained there we'll go back and understand this intuitively.

First, we prove that K ∗∗ = K , in two parts.

• K ⊆ K ∗∗ Take any vector k ∈ K . Consider that for any

x ∈ K ∗, k · x ≥ 0, by de�nition of K ∗. Since x was chosen

arbitrarily, we have that

k · x ≥ 0 ∀x ∈ K ∗

Thus, k ∈ K ∗∗.

• K ∗∗ ⊆ K We will show that if x /∈ K , then x /∈ K ∗∗.

If x /∈ K , then there is a strictly separating2hyperplane g

2Note that the strict inequality (cor-
responding to strict separation) is
only possible if K if closed. If
not, the implications in this ques-
tion only apply to cl(K ). Thus,
in a more general case in which K
is not closed, the true statement is
K ∗∗ = cl(K ).
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such that

x · g < k · g for all k ∈ K (3)

Now, note that

� Since K is a cone, 0 ∈ K , and so putting k = 0 into

the RHS, we obtain

x · g < 0

� It must be the case that k · g ≥ 0 for all k ∈ K . If

that was not the case, multiplying k by an arbitrarily

large constant α would result in an αk ∈ K with an

arbitrarily large negative RHS in equation 3. This is

impossible, since the LHS of equation 3 is �nite.

Thus, g ∈ K ∗.3

Clearly, therefore, there is at least one vector in K ∗ whose
dot product with x is not greater or equal to 0. Thus, x /∈
K ∗∗.

The main insight to pull out from the result above is that for each

point /∈ K , the set K ∗ contains a hyperplane that separates that
point from K . Any such hyperplane must correspond to a point

in K . This might sound like a trivial result, but it's actually

quite profound, and it's only true because K is a cone. If K
were not a cone, this would not be true, because set K ∗ only

contains hyperplanes of the form x · y ≥ 0 � in other words, only

hyperplanes that pass through the origin. In the case of a cone,

this is enough � any point not in the cone is separated from the

cone by a hyperplane of that form. This is not the case with a

general convex set. Figure 2 illustrates this concept.

Having said that, it is important to realize that though it might be

tempting to take K and K ∗ and draw them on the same diagram,

it'd be nonsense if we choose the interpret K as described in

the previous paragraph. Indeed, even though both reside in Rn,
their substance is very di�erent. The elements of K are vectors.

The elements of K ∗ are hyperplanes � functions on vectors. It

is unfortunate (or fortunate, depending on your point of view!)

that in Rn, both vectors and hyperplanes can be represented by a

vector in Rn.4Later in this course, we will encounter other spaces

in which things aren't so simple.

The result that K ∗∗ = K should then not be surprising given the

interpretation above. The set K ∗∗ can be interpreted as `those

vectors that are separated from all other vectors by the hyper-

planes in K ∗'. Since we know that a convex set is de�ned by its

supporting hyperplanes, we do indeed get K back. This would

certainly not be the case for a general convex set � indeed, the set

3Note that what we've just done is
shown that for any point /∈ K , the
set K ∗ contains a hyperplane that
separates the point from K . We'll
be using this fact later. . .

Figure 2: The top �gure illustrates
the fact that separating hyperplanes
that pass through 0 only are su�cient
in describing a convex cone. The bot-
tom �gure illustrates that for a gen-
eral convex set, specifying the set of
hyperplanes that separate the set and
pass through 0 isn't enough � there are
many more hyperplanes that separate
the set and which are not in K because
they do not pass through 0.

4It turns out that this is because Rn
is a Hilbert space, equipped with an
inner product. More on this in the
last part of the course!
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of hyperplanes that pass through 0 and separate such a set would

not properly de�ne the set, as illustrated in �gure 2. Instead, they

de�ne the smallest convex cone that contains the set � thus, for a

general convex set C , C ∗∗ is in fact the smallest convex cone that

contains C .

Let's now proceed to the second part of the question. We will,

once again, complete our proof in two parts

• x minimum element ⇒ condition Suppose x is the mini-

mum element of C with respect to K . Then z − x �K 0
(in other words, z− x ∈ K ). Thus, given any g �K ∗ 0 (ie:

g ∈ int(K ∗)), we have g · (z− x) > 0.5As such

g · z > g · x ∀z ∈ C

In other words, g · x is the unique minimizer of g · z over

z ∈ C .

This concept is illustrated for the case K = R2
+ in Figure 3.

• Condition ⇒ x minimum element Suppose g·x is the unique

minimizer of g · z over z ∈ C for all g �K ∗ 0, but that x
is not the minimum element. This means there exists an-

other z ∈ C such that z �K x. Since z − x �K (ie:

z − x /∈ K ), there exists a strictly separating hyperplane

which, by the result above, must correspond to a vector

g̃ ∈ K ∗ (ie: g̃ �K ∗ 0) with g̃ · (z − x) < 0. Since the

inequality is not strict, this is also true in a neighborhood of

g̃. This constradicts the assumption x is the unique mini-

mizer of g̃ · z over z ∈ C .

� � �

Question 7 (**Polar sets)

The polar of a set C ⊆ Rn is de�ned as the set

C ◦ = {y ∈ Rn : y · x ≤ 1 for all x ∈ C }

Answer the following questions

• Show that C ◦ is convex, even if C is not.

• Show that if C is closed and convex with 0 ∈ intC , then

C ◦◦ = C .

• Explain intuitively why the condition 0 ∈ intC is needed

in the previous part. What is C ◦◦ for a set that does not

contain 0?

5Note the importance of the strict
inequality in g �K ∗ 0. Without it,
the hyperplane would not be strictly
separating and g·x would not be the
unique minimizer.

C

x

z

Figure 3: This �gure illustrates the
problem of �nding the minimum ele-
ment of set C with respect to the cone
K corresponding to R+, the closed
positive halfspace. The dotted lines
indicate all the hyperplanes in K ∗

(shifted to meet the point x under con-
sideration). Clearly, if the point secx is
to be the minimum element of C , g · x
must be less than g · z for every point
z ∈ C , and every one of the dotted hy-
perplanes.
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Solution

Let's �rst show that C is convex

C ◦ = {y ∈ Rn : y · x ≤ 1 for all x ∈ C }
=

⋂
x∈C

{y ∈ Rn : y · x ≤ 1}

C ◦ is therefore an in�nite intersection of (convex) halfspaces, and

is therefore convex.

We show that C = C ◦◦ in two steps

• C ⊆ C ◦◦ Consider that for any x ∈ C , we have that

x · y ≤ 1 for all y ∈ C ◦

By de�nition, this means that x ∈ C ◦◦.

• (C ◦)◦ ⊆ C We will show that c /∈ C implies that c /∈ C ◦◦.

Consider that if c /∈ C , since C is closed and convex, there

is a strictly separating hyperplane g such that

c · g > x · g for all x ∈ C

Now, let's try to make this inequality as tight as possible

by �nding the largest value the RHS can take, which we'll

denote

α = sup
x∈C
{x · g}

Note that

� α ≥ 0, because 0 ∈ C .

� Since 0 ∈ intC , an entire neighborhood of 0 is also con-

tained in C . By feeding various elements of that neigh-

borhood into the RHS above, we �nd that the RHS

therefore takes on both positive and negative values.

Thus, α > 0.

� The RHS above is bounded above by the LHS, which

is �nite. Thus, α <∞.

The three facts above mean that we can re-scale g to g̃ to

set α = 1. This gives6

c · g̃ > 1 = sup
x∈C
{x · g̃}

Now consider the two parts of this statement

� The fact that supx∈C {x · g} = 1 tells us that g̃ ∈ C ◦.

� The fact that c · g̃ > 1 tells us that there is at least one
point in C ◦ whose dot product with c is strictly greater
than 1. Thus, c cannot be in C ◦◦.

6Just like in the previous question,
note the importance of what we've
just done here. We've shown that
any hyperplane that separates our
set C from any point has a corre-
sponding element in the set C ◦. In
the previous question, we found a
way to do this for a cone. In this
question, we've found a way to do
this for any convex set, but we've
had to add the proviso that the set
contain 0 in its interior (more on
that later).
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The question that begs to be asked, of course, is why the re-

quirement that 0 ∈ int(C ) is so important. What happens if

it isn't? The answer lies in the kind of hyperplanes that polars

can encode. We saw in the previous question that dual cones

only include hyperplanes that pass through the origin. Similarly,

every hyperplane in the polar set must take the form g · x ≤
a strictly positive number. This means that polar sets can only

encode halfspaces that do include the origin. Figure 4 illustrates

this idea.

Because of this, if C does not contain the origin, C ◦ is not able to
encode every hyperplane that separates the set from an arbitrary

point. This is illustrated in �gure 5.

� � �

Question 8 (***Blackwell's Theorem)

5Consider the following model of a decision problem

• Let S = {s1, . . . , sns} be the �nite set of states of nature and
p ∈ Rns be a vector of probabilities associated with each

state of nature (later, we will let π = diag(p), the matrix

containing the components of p on its diagonal).

• The states are not observed directly � instead, a set of signals

Y =
{
y1, . . . , yny

}
is observed. An information structure

Q ∈ Rns×ny is a matrix of probabilities such that

Qij = P(yj displayed|si happens)

• Let A = {a1, . . . , ana} be the set of actions available to the

decision maker, and let the payo� matrix U ∈ Rna×ns be

such that

Uij = Payo� when action ai is taken in state sj

The decision maker observes signals and must decide which action

to take. We encode these decisions in a matrix D ∈ Rns×na , which
satis�es

Dij = P(Taking action aj |Observing signal yi)

For two information structures P and Q, Q is said to be more

informative than P (denoted P ⊆ Q) if it allows a higher opti-

mal expected payo� for all values of U and p. Prove Blackwell's

Theorem, which states that Q is more informative than P if and

5This question is based on An elementary proof of Blackwell's theorem, M.
Leshno and Y. Spector, Mathematical Social Sciences 25(1992):95-98

Figure 4: A sample of the kinds of
halfspaces polar sets can encode. Note
that every halfspace here contains the
origin. Polar sets are not able to en-
code halfspaces that do not include the
origin.

x

y
z

C

Figure 5: The polar set only includes
halfpsaces that include the origin. So
for example, the hyperplanes that con-
tain C and separate it from x and y are
in C ◦, whereas the hyperplanes that
contain C and separate it from z (or
indeed, any point in the yellow area
above) are not.
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only if there exists a Markov matrix M (ie: a matrix with entries

between 0 and 1 and whose rows sum to 1) such that P = QM .

In the economics literature,M is called a garbling matrix, presum-

ably because it `garbles' some of the information in Q to produce

a less informative matrix P .

Solution

We �rst need to �nd an expression for the optimal expected payo�

for a given information matrix Q, payo� matrix U and probability

vector p. It turns out the expression is given by

F (Q,U,p) = max
D∈M

tr(QDUπ)

where M is the set of all Markov matrices. The maximization

part is obvious � clearly, we need to maximize over our possible

decisions D. We need, however, to understand the expression we

are maximizing � why is the expected payo� of a given decision D
given by tr(QDUπ)? Consider:

• DU outputs a matrix in which the rows correspond to signals

and the columns correspond to states. For each signal and

state, it provides the expected payo� when a certain signal

is observed in a given state of nature.

• Each row of Q corresponds to a state. When we multiply

it by the column corresponding to the same state in DU ,
the diagonal element that results is the expected payo� for a

given state, because it weights each signal by the probability

the signal will appear in that state.

• Finally, we multiply each of these diagonal elements by the

probability of the state occurring, and sum them using the

trace.

Thus, expressed more compactly, Blackwell's Theorem states that

F (Q,U,p) ≥ F (P,U,p) ∀U,p⇔ ∃M ∈M s.t. P = QM

Before we begin, let's introduce some notation. In proving this

theorem, we will need to make use of the matrix inner product

de�ned by

A ·B =
∑
i

∑
j

AijBij

In other words, we take each component of one matrix, multiply

it by the corresponding component in the other and add them.

In a way, you can think of this as simply stacking the columns

of A on top of each other to obtain a large vector � the matrix

inner product is then the simple inner product on that augmented

vector. The following three facts are proved in the margin
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1. AB · C = A · CB>

2. tr(PDUπ) = PDU · π

Let's now prove both directions. Let M be a Markov matrix.

• P = QM ⇒ Q more informative than P This side is triv-

ial. Consider that

F (P,U,p) = max
D∈M

tr(PDUπ)

= max
D∈M

tr(QMDUπ) (4)

≤
7

max
D′∈M

tr(QD′Uπ) (5)

= F (Q,U,p)

This is clearly true for all U and p, and so Q is indeed more

informative than P .

• Q more informative than P ⇒ ∃M s.t. P = QM We prove

this by contradiction. De�ne a set

CQ = {A : ∃M ∈M s.t. A = QM}

Suppose Q is more informative than P , but that for every
Markov matrix M , we have P 6= QM . In other words, P /∈
CQ.

Note, however, that the set CQ is convex8and closed.

We now use the Separating Hyperplane Theorem 9 � since

CQ is convex and P /∈ CQ, there is a Hyperplane Û that

separates them. In other words,

A · Û < P · Û ∀A ∈ CQ

Or alternatively,

QD · Û < P · Û ∀D ∈M

Now, construct a matrix U> = π−1Û and use it as a payo�

matrix. This equation then becomes

QD · πU> < P · πU> ∀D ∈M

Applying property 1 of inner products above, this becomes

QDU · π < PU · π ∀D ∈M

Applying property 2 of inner products above, this becomes

tr(QDUπ) < tr(PUπ) ∀D ∈M

Maximizing both sides over all D ∈M , we get

max
D∈M

tr(QDUπ) < tr(PIUπ)

Property 1: We will use `Einstein
notation', in which any repeated in-
dices are assumed to be summed
over. So for example, AijBjk =∑
j AijBjk = AB. Note that AB ·

C = (AB)ijCij = AikBkjCij =

AikCijB
>
jk = Aik(CB

>)ik.

Property 2: Note that since
pi is diagonal, tr(PDUπ) =
(PDU)iiπii = (PDU)ijπij =
PDU · π

7This step follows because since M
and D are both Markov matrices,
MD must also be a Markov ma-
trix. This means that by setting
D′ = MD, we see that QMDUπ
in line 4 is just one possible value
of the quantity being maximized in
line 5. If we don't restrict ourselves
to that value of D′ but instead max-
imize over all such values, we clearly
end up with something larger.

8To see why, consider A1 = QM1

and A2 = QM2, both in CQ. Now

consider some λ ∈ [0, 1] and let λ̃ =
1− λ. Note that

λA1 + λ̃A2 = Q
(
λM1 + λ̃M2

)
Furthermore, note that λM1 + λ̃M2

is also a Markov matrix (this is triv-
ial to check). Thus, the convex com-
bination of the A's is of the form
QD′ with D′ ∈M , and is therefore
also in CQ.

9The matrix inner product can eas-
ily be shown to be a bona-�de in-
ner product, so all our results for
Rn extend here, including the sep-
arating hyperplane theorem. But if
you're bothered with using a sepa-
rating hyperplane argument on a set
of matrices, just think of it as a vec-
tor consisting of the columns of the
matrix, stacked on top of each other
(as discussed above when we intro-
duced the inner product). The ma-
trix inner product is then the simple
inner product on R(nans), and all
our results follow.
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Clearly, I ∈M , and so replacing this I byD and maximizing

over all D ∈M can only increase the RHS. Thus,

max
D∈M

tr(QDUπ) ≤ max
D∈M

tr(PDUπ)

Or in other words,

F (Q,U,p) ≤ F (P,U,p)

As such, we have found at least one payo� matrix U for

which P provides a greater maximum expected gain than Q.
This contradicts our assumption that Q is more informative

than P .

� � �

Daniel Guetta (daniel.guetta.com), January 2012
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