
Convex Optimization

Midterm Exam

Question 1 (Finite Cover of a Convex Set)

Suppose a compact convex set C ∈ Rd is covered by a family F
of open half-spaces (in other words, C ⊆ ∪H∈F (C ∩H)). Then it

is covered by d+ 1 or fewer of the half-spaces in F .

(Note that for any givenH ∈ F , it may be the case thatH∩C 6= ∅
and H ∩Cc 6= ∅, where Cc denotes the complement of the set C.)

You may initially assume that F is a �nite family � extra credit

for showing that it works for an in�nite family as well.

Solution ( Helly's Theorem )

First, consider that since C is compact and F is an open cover

of C, there is a �nite subset of F that also covers C (by the

properties of compactness). Thus, we can assume F is �nite.

Consider the following family of sets

S = {C ∩Hc : H ∈ F}

Since H ∈ F is open, Hc is closed and so C∩Hc is the intersection

of a closed set and a compact set. Thus, it is compact (and convex)

Now, the fact F covers C implies that⋂
S∈S

S = ∅

Since F is �nite (assume |F | = N), we can write this as

N⋂
n=1

Sn = ∅

By (the converse of) Helly's Theorem1, this means that there is a

subset of d+ 1 sets in S , Si1 , · · · , Sid+1
such that

d+1⋂
n=1

Sin = ∅

d+1⋂
n=1

(C ∩Hc
in) = ∅

1Recall that Helly's Theorem states
that for a �nite collection of con-
vex subsets of Rd, if the intersec-
tion of d + 1 of these subsets is
nonempty, then the whole collection
has a nonempty intersection.
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And this implies that

C ⊆
d+1⋃
n=1

Hin

As required.

Solution ( Radon's Theorem )

First, consider that since C is compact and F is an open cover

of C, there is a �nite subset of F that also covers C (by the

properties of compactness). Thus, we can assume F is �nite.

Assume the smallest such cover has k > d+ 1 elements. For each

of those k sets, let x(i) be a point in Ci = Fi ∩ C. Each of those

points must be unique (if not, we can remove the corresponding

hyperplane and still maintain a cover, contradicting the assump-

tion that this is smallest such cover).

Now, by Radon's Theorem2, since k > d+1, there exists a partition
(I, J) of the x(i) such that the intersection of the convex hulls of

points in I and J is non-empty. Let z be a point in the intersection,
and assume without loss of generality that z ∈ J . Clearly, z ∈ C
and z ∈ Cz for some z ∈ J .

Now, since z ∈ J , x(i) /∈ Cz for all i ∈ I. Clearly, therefore

{conv(x(i)), I ∈ i} ∩ Cz =

However, z is in both these sets. This is a contradiction.

� � �

Question 2 (Separating Hyperplane Theo-
rem)

Suppose A ∈ Rm×n and b ∈ Rm. Show that exactly one of the

following two statements are true

1. There exists an x > 0 such that Ax = b.

2. There exists a λ ∈ Rm such that A>λ ≥ 0 (with A>λ 6= 0)
and b · λ ≤ 0.

Show how to computer the certifcate λ, if it exists, via linear

programming.

Solution ( Method 1 )

Let's prove this in two steps

2Recall that Radon's Theorem
states that for n + 2 points in Rn,
there exists a partition of these
points such that the intersection of
the convex hull of the two partitions
is non-empty.
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2 ⇒ not 1 : Suppose a λ exists as described in step 2, and let

b = Ax. Then

b · λ ≤ 0⇒ x>A>λ ≤ 0

However, we also know that A>λ ≥ 0 with at least one

strictly positive component. As such, at least one component

of x must be negative for this inequality to hold, and x ≤ 0.
Thus, (1) above does not hold.

Not 1 ⇒ 2 : Consider the set

C = {β : β = Ax,x > 0}

And suppose b /∈ C (ie: suppose (1) is not true). Then

by the separating hyperplane theorem, there exists a λ such

that

λ · b ≤ λ ·Ax = x · (A>λ) ∀x > 0 (1)

Now, consider a particular λ that satis�es equation 1:

• Let x′ = α1 and put this into equation 1. Letting

α→ 0, the RHS of equation 1 tends to 03and so we �nd

that

b · λ ≤ 0

• Let x′ = αei for every i successively. Letting α → ∞,

we �nd that

A>λ ≥ 0

If this were not the case, the RHS would shoot to −∞,

and since the LHS is �nite, this would result in a con-

tradiction.

• Finally, we need to show that A>λ 6= 0. This is not dif-
�cult � we can assume, without loss of generality, that

A has full row-rank (if it doesn't, simply remove any

rows that are linear combination of the others and re-

solve the problem in a lower dimension). A> therefore

has full column rank. And therefore,

λ 6= 0⇒ A>λ 6= 0

To �nd the certi�cate using linear programming, we need to solve

the LP

min b · λ
s.t. A>λ ≥ 0

1 · (A>λ) = 1

3Because

x′ · (A>λ) ≤ ‖x′‖ · ‖A>λ‖
= α‖A>λ‖
→ 0

Though I wasn't so picky in requir-
ing this exact logic.
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The equality constraint simply forces A>λ to be strictly positive.

If the LP has a zero or negative optimal solution, the certi�cate

exists

Solution ( Method 2 )

A few of you provided the following solution (usually liberally em-

bellished). This method also uses the separating hyperplane the-

orem, but instead considers the following two sets

A = {Ax : x > 0}

B = Rn++

Consider a b and choose an x such that Ax = b (as discussed

above, A can be assumed to have full-rank, so only one x satis�es

this).

Now,

b /∈ A⇔ x /∈ B

Therefore, if b /∈ A, there is therefore a separating hyperplane

between x and Rn++. In other words, there exists a c 6= 0

c · x ≤ c · p ∀p ∈ Rn++ (2)

Letting pi →∞ implies that c ≤ 0. Furthermore, since A has full

rank, we can �nd a λ such that c = A>λ. Thus, we have found a

λ such that

c = A>λ ≤ 0

c = A>λ 6= 0

Finally, putting c = A>λ into 2, we get

x>A>λ ≤ p>A>λ ∀p ∈ Rn++

b · λ ≤ p>A>λ ∀p ∈ Rn++

Letting the RHS tend to 0 as (in the �rst solution), we obtain our

required result.

� � �
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Question 3 (Monotone Extension of a Con-
vex Function)

Suppose f : Rn → R is convex. A function h : Rn → R is mono-

tone nondecreasing if h(x) ≥ h(y) whenever x ≥ y. The mono-

tone extension of f is de�ned as

g(x) = inf
z>0

f(x+ z)

(We will assume g(x) > −∞).

Show that g is convex and monotone non-decreasing, and that

g(x) ≤ f(x) for all x.

Let h be any other monotone non-decreasing and convex function,

with h(x) ≤ f(x) for all x. Show that h(x) ≤ g(x) for all x.
Thus, g is the maximum convex monotone underestimator of f .

Solution ( Convexity )

Operations that preserve convexity : Seven people solved the

problem as follows. x+z is an a�ne function of both x and

z. Thus, f(x + z) is the composition of a convex function

and an a�ne function, and is jointly convex in x and z.

g(x) is the partial minimization of this function over the

convex set z ≥ 0 and is therefore convex.

Directly from de�nition : Five people solved the problem as

follows. Let

x∗ = argminz≥0f(x+ z)

Then we have that

g(x) = f(x+ x∗)

As such, for any x1,x2 and λ ∈ [0, 1], λ̄ = 1− λ,

g(λx1 + λ̄x2) = f
[
λ(x1 + x∗1) + λ̄(x2 + x∗2)

]
≤

4
λf(x1 + x∗2) + λ̄f(x2 + x∗2)

= λg(x1) + λ̄g(x2)

Incorrect! Three people attempted to solve the problem as fol-

lows. For any x1,x2 and λ ∈ [0, 1], λ̄ = 1 − λ, we have

4By convexity of f .

5Incorrect! This is simply not true.
In moving from line 4 to line 5, what
we're e�ectively doing is allowing
each of the two vecz's in the ques-
tion to take a di�erent value. This
gives us more �exibility, and so our
optimal value will go down. Thus,
line 4 is ≥ line 5, not the other way
round.
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g(λx1 + λ̄x2) = inf
z≥0

f(λx1 + λ̄x2 + z)

= inf
z≥0

f
[
λ(x1 + z) + λ̄(x2 + z)

]
(3)

≤
4

inf
z≥0

[
λf(x1 + z) + λ̄f(x2 + z)

]
(4)

≤
5

λ inf
z≥0

f(x1 + z) + λ̄ inf
z≥0

f(x2 + z)(5)

= λg(x1) + λ̄g(x2)

One person did manage to give a correct version of this an-

swer by noticing, in line 3, that the two z's can be replaced

by z1 and z2 and the infz≥0 changed to infz1,z2≥0 with-

out changing the problem. This `decoupling' however, is no

longer obviously possible in line 4.

Incorrect! One person tried to do this directly by considering

the region in which f ′ is positive, negative and 0. This

would work for the 1D case, but not for the general multi-

dimensional case (for many reasons � among others, since

∇f(x) may have some positive and some negative compo-

nents).

Solution ( Monotone non-decreasing )

Every correct answer was some variation on the following solution.

Take a x ≥ y. Then we can write x = y+d where d = x−y ≥ 0.
We then have

g(x) = inf
z≥0

f(x+ z)

= inf
z≥0

f(y + d+ z)

= inf
ẑ≥d

f(y + ẑ) (6)

≥
6

inf
ẑ≥0

f(y + ẑ) (7)

= g(y)

Solution ( g(x) ≤ f(x) )

Almost everyone got this (though some omitted it).

g(x) = inf
z≥0

f(x+ z) ≤
7
f(x+ 0) = f(x)

Solution ( g is Maximum Understimators )

All solutions were a (usually much-lengthened!) version of the

following argument. Since h ≤ f , we have that for every x and z

h(x+ z) ≤ f(x+ z)

6This is true because the programs
in lines 6 and 7 are identical except
for their feasible region, and the fea-
sible region in line 6 is smaller than
that in line 7. Thus, the program
in line 7 will have a `better' (in this
case smaller) solution.

7Because 0 ∈ z : z ≤ 0, the feasible
region of the program.
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Taking an infemum over z ≥ 0 on both sides

inf
z≥0

h(x+ z) ≤ inf
z≥0

f(x+ z)

The RHS is simply g(x (by de�nition) and the LHS is h(x), since
h is monotone non-decreasing.

� � �

Question 4 (Epigraph of K-Convex Func-
tions)

Let K ⊆ Rm be a proper convex cone with associated generalized

inequality �K , and let f : Rn → Rm. The epigraph of f , with
respect to �K , is de�ned as the set

epiK f =
{

(x, t) ∈ Rn+m : f(x) �K t
}

The function is called K -convex if for all x,y ∈ Rn and λ ∈ [0, 1]
(and λ̄ = 1− λ)

f
(
λx+ λ̄x

)
�K λf(x) + λ̄f(x)

Show that f is K -convex if and only if epiK f is a convex set.

Solution

Consider some x1,x2 ∈ Rn and λ ∈ [0, 1], with λ̄ = 1 − λ. The

crux of this question lies in the quantity

f(λx1 + λ̄x2)

Now, consider

K-convexity ⇒ convex epigraph : Start from the expression

above, and note that K-convexity implies that

f(λx1 + λ̄x2) �K λf(x1) + λ̄f(x2) (8)

Now, consider (x1,y1), (x2,y2) ∈ epif . This means that

f(x1) �K y1 f(x2) �K y2 (9)

Feeding 9 into 8, we immediately get

f(λx1 + λ̄x2) �K λy1 + λ̄y2

⇒ λ(x1,y1) + λ̄(x2,y2) ∈ epif

Since the choice of x1 and x2 was arbitrary, epif is convex.
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Convex epigraph ⇒ K-convexity : Consider (x1,y1), (x2,y2) ∈
epif . Since we assume the epigraph is convex,

[
λ(x1,y1) + λ̄(x2,y2)

]
∈

epif , which means that

f(λx1 + λ̄x2) �K λy1 + λ̄y2

Choosing y1 = f(x1) and y2 = f(x2) (this is legal � the

points still satisfy 9), we �nd

f(λx1 + λ̄x2) �K λf(x1) + λ̄f(x2)

Thus, f is K-convex.

� � �

Question 5 (Robust Linear Programming
with Ellipsoidal Uncertainty Sets)

Consider the following robust linear program

min maxf (0)∈F0
(f (0) · x)

s.t. maxf (i)∈Fi
(f (i) · x)

Where

Fi =
{
f : (f − g(i))>V −1i (f − g(i)) ≤ 1

}
and Vi � 0, g(i) ∈ Rn.

Solution

The crux of this question was proving that8

max
f (i)∈Fi

(f (i) · x) = g(i) · x+
∥∥∥V 1/2

i x
∥∥∥
2

(10)

Having done this, the program becomes

min g(0) · x+ ‖V 1/2
0 x‖2

s.t. g(i) · x+ ‖V 1/2
i x‖2 ≤ bi

Finally, we can use an epigraph formulation to write this as

min β0

s.t. ‖V 1/2
0 x‖2 ≤ β0 − g(0) · x

‖V 1/2
i x‖2 ≤ bi − g(i) · x

This is an SOCP.

I saw two ways of proving equation 10. I think the �rst was rather

nicer, but that's just me!

8V 1/2 is a matrix such that
V (1/2),>V (1/2) = V . The existence
of such a matrix is implied by the
fact V � 0.
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Cauchy-Schwartz : Note that the program on the LHS of equa-

tion 10 is

max f · x
s.t. (f − g)>V −1i (f − g) ≤ 1

Now consider that the constraint can be re-written as∥∥∥V −1/2i (f − g)
∥∥∥2
2
≤ 1

substituting u = V
−1/2
i (f − g), our program becomes

g · x+ max (V
1/2
i u) · x

s.t. ‖u‖22 ≤ 1

The objective can be re-written as follows

(V
1/2
i u) · x = u>V

1/2
i x = u · (V 1/2

i x)

Now consider that by the Cauchy-Schwartz Inequality,

(V
1/2
i x) · u ≤ ‖u‖2 · ‖V 1/2

i x‖2

This inequality is tight � in other words, the maximum is

attained when the two vectors are aligned. Since ‖u‖2 ≤ 1,
we �nd that the maximum ends up being

g · x+ ‖V 1/2
i x‖2

KKT Conditions

� � �

Question 6 (Optimization over Polynomi-
als)

The Markov-Lucacs Theorem states that the polynomial

p(t) = p0 + p1t+ · · ·+ p2kt
2k

is non-negative on R if and only if it is the sum of the squares of

two or more polynomials of degree k or less � ie:

p(t) = r(t)2 + s(t)2

= (r · t)2 + (s · t)2

= t>k

(
rr> + ss>

)
tk
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Where tk = (1, t, · · · , tk) and r, s ∈ Rk+1.

Part A

Use the representation above to show that p(t) is non-negative on
R if and only if

pi =
∑

m+n=i+2

Ymn

for some Y ∈ Sk+1
+ (ie: Y is a positive semide�nite (k+1)×(k+1)

matrix.

Solution

Most solutions here followed the same (correct) route. The �rst

step involves some book-keeping. We need to show that

p(t) = t>k Y tk =
2k∑
i=0

pit
i

with

pi =
∑

m+n=i+2

Ymn

This is tedious but not particularly di�cult to do. Here's the

cleanest method I saw (though I gave credit to all valid methods)9

t>k Y tk = t>k

(∑k+1
j=1 Y♦jt

j−1
)

=
k+1∑
i=1

[
ti−1

(∑k+1
j=1 Yijt

j−1
)]

=

k+1∑
i,j=1

Yijt
i+j−2

=

2k∑
i=0

[( ∑
m+n=i+2

Ymn

)
ti

]

Having does this, let's do what the question asks:

p(t) = t>k Y t, Y � 0⇒ p(t) ≥ 0 : This is not di�cult. If Y � 0,

then for any tk (ie: for any t) the quadratic form is positive

(and therefore so is p(t).

p(t) ≥ 0⇒ ∃Y � 0 s.t. p(t) = t>k Y t : To prove this direction,

we need to use the ML Theorem to write p(t) as

p(t) = t>k

(
rr> + ss>

)
tk

9In the below, I use the notation
Y♦j to denote the jth row of Y .
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This is in the form required, with Y = rr> + ss>. All that
remains to do is that this Y is positive semide�nite. To do

this, consider that for any x

x>Y x = x>
(
rr> + ss>

)
x

= ‖r>x‖22 + ‖s>x‖22
≥ 0

Thus, Y must be positive semide�nite. Note that I was fairly

strict in requiring some argument to show that Y is positive

de�nite to get full credit.10

Part B

For a polynomial of the form above, reformulate the optimization

min
x∈R

p(x)

as a semide�nite program.

Solution

Consider that minx∈R p(x) is equivalent to

max
(x,t)

t

s.t. t ≤ p(x)

(The best way to see this is to consider a line y = t. This program
is equivalent to pushing this line up until it touches p(x). This

clearly �nds the minimum of p(x)).

Re-arranging the inequality, we �nd that this is equivalent to

max
t

t

s.t. p(x)− t ≥ 0 ∀x

Re-stated, this constraint basically requires the polynomial q(x) =
p(x)−t to be positive for all R. The coe�cients of this polynomial

are

q0 = p0 − t

qi = pi ∀i = 1, · · · , 2k

Using part A, the statement that q should be positive is equivalent

to the statement that these coe�cients can be assembled into a

positive semide�nite matrix. Thus, this program is equivalent to11

10An incorrect argument I
sometimes saw was that since
p(x) = t>k Y tk ≥ 0, Y must be
positive semide�nite. This, how-
ever, is not quite right, because the
inequality t>k Y tk ≥ 0 does not hold
for every vector tk � it only holds
for vectors of the form (1, t, · · · , tk),
and therefore proves nothing about
the positive semide�niteness of
Y . Indeed, if that was enough
of an argument, then the whole
sum-of-squares theorem wouldn't
be needed to prove this!

Looking back at the notes for
review session 3, though, I found
that my solution there was very
ambiguous and might have led you
to believe that this was the correct
answer. I therefore didn't penalize
anyone who gave that justi�cation.

11Incorrect variations I saw in-
cluded putting t>k Y tk in the objec-
tive (this is not linear and therefore
not an SDP � and in fact, it's not
even quadratic; it's a polynomial of
order 2k!) or maximizing t with re-
spect to the constraint t>k Y tk − t
(though the objective is now lin-
ear, this constraint is neither lin-
ear nor quadratic � it's of order 2k).
The key error of these solutions was
keeping tk as a decision variable,
which is bound to fail because any
such formulation must include terms
of the form t2k.
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max
t,Y

t

s.t. Y11 = p0 − t( ∑
m+n=i+2

Ymn

)
= pi ∀i 6= 0

Y � 0

� � �

Question 7 (Minimizing a Function Over
the Probability Simplex)

Show that the necessary and su�cient condition to ensure that x̂
minimizes f(x) over the probability simplex

P = {x ∈ Rn : x ≥ 0,1 · x = 1}

is given by

∃g ∈ ∂f(x̂) s.t. min
1≤i≤n

(gi) ≥ g · x̂

Solution

From the result developed in your homework, the necessary and

su�cient condition can be written

∃g ∈ ∂f(x̂) s.t. g · y ≥ g · x̂ ∀y ∈P

This can be written as

∃g ∈ ∂f(x̂) s.t. min
y∈P

(g · y) ≥ g · x̂

Now, consider the term miny∈P(g ·y) on the right. Here are three

di�erent ways to show that the optimal value of this LP is equal

to the smallest component of g. I was, once again, pretty strict in

requiring a waterproof de�nition.

Extreme points : One person tried to give this argument but

didn't quite get there.

The program is an LP. By standard results for linear pro-

gramming, the solution of an LP occurs at one of the extreme

points of the feasible set P. In this case, the extreme points

are the vectors e(i), containing a 1 in position i and a zero

everywhere else. Clearly, each of these vectors dotted with

g produces gi. Thus, the optimal value of the minimization

is the smallest component of g, as stated in the question.
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Duality : No-one tried this.

To show the above rigorously, we can use duality. Consider

that the program miny∈P(g · y) can be written as

min g · y
s.t. 1 · y = 1

x ≥ 0

This is an LP, and its dual is

max λ

λ ≤ gi ∀i

Clearly, the optimal value of the program is the smallest

component of g. By strong duality for LPs, this is therefore

also the optimal value of the primal, hence the result in the

question.

Method 3 : Most people who got it right did it this way.

Showing

min
y∈P

(g · y) ≤ min
1,··· ,n

gi

is not hard, because the feasible region of the program on

the right is smaller than that of the program on the left, so

that on the left attains a �better� (ie: lower) value.

To prove the other direction, note that for all y ∈P

g · y =
n∑
i=1

yigi

≥
n∑
i=1

yi min
i

(gi)

= min
i

(gi)

n∑
i=1

yi

=
12

min
i

(gi)

Thus, every feasible point of the program on the LHS is greater or

equal to a feasible point on the RHS. Thus, 13

min
y∈P

(g · y) ≥ min
1,··· ,n

gi

� � �

12Because y ∈P, so
∑n

i=1 yi = 1

13Or, a variation on this theme, if

gi ≥ g · x̂ ∀i

then multiplying both sides by yi for
y ∈P and summing over i gives

g · y ≥ g · x̂ ∀y ∈P

Another variation on the same
theme is simply to note that

y ∈P ⇒ y ∈ conv(e(i))

.
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Question 8 (`1-minimization)

Part A

Prove the following primal-dual relationship

max c · p− λ‖p− q‖1 = min w · q + β
s.t. p ≥ 0 s.t. w + β1 ≥ c

1 · p = 1 ‖w‖∞ ≤ λ

Where ‖x‖1 =
∑n

i=1 |xi| denotes the `1 norm of the vector x and

the constant λ, the vector q ∈ Rn+ and c ∈ Rn are problem data.

Assume that q is a probability mass function (ie: 1 · q = 1).

Solution ( Method 1 )

First, note that the problem is only convex for λ ≥ 0.

Now, substitute u = p − q. Bearing in mind that 1 · q = 1, the
primal problem becomes

max c · u+ c · u− λ‖u‖1
s.t. u+ q ≥ 0

1 · u = 0

The Lagrangian for this problem is (with w ≥ 0)14

L(u,µ, β) = c · u+ c · q − λ‖u‖1
+µ · (u+ q)− β1 · u

= (c+ µ) · q
+(c+ µ− β1) · u− λ‖u‖1

= (c+ µ) · q

+
n∑
i=1

[(ci + wi − β)ui − λ|ui|]

Now, consider maximizing this with respect to u. L is basically a

piecewise linear function of each component of u, with a disconti-

nuity at 0. We need all of the individual gradients to be positive

for [−∞, 0] and negative for [0,∞], or else we can make L shoot

up to ∞. In other words, we need

−λ ≤ max
i

[ci + µi − β] ≤ λ

More tidily, this becomes

‖c+ µ− β1‖∞ ≤ λ

14The minus sign in front of the β
is perfectly legal, but unusual � it's
there to make sure our dual ends up
in the required form. We could just
as easily use +β and later substitute
β̃ = −β (since β is unconstrained).
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So the dual is

min (c+ µ) · q
s.t. ‖c+ µ− β1‖∞ ≤ λ

µ ≥ 0

Substituting w = c + µ − β1, and remembering that 1 · q = 1,
this becomes

min w · q + β

s.t. ‖w‖∞ ≤ λ
w + β1 ≥ c

The Slater Conditions are clearly met for this primal, so by Strong

Duality, the optimal solutions of both problems are equal.

Solution ( Method 2 )

Once again, note that the primal is only convex for λ ≥ 0.

Now, consider that the problem can be written as

max
p≥0,1·p=1

{
c · p− max

‖w‖∞≤λ
[w · (p− q)]

}
Changing the inner max to a min (and noting that we can inter-

change p−q with q−p since the optimal value of w will take care

of all relevant signs)

max
p≥0,1·p=1

min
‖w‖∞≤λ

{c · p−w · (p− q)}

Now, note that the sets over which we are optimizing are compact

and that the objective is bi-linear. We can therefore apply the

min-max theorem and re-write this as

min
‖w‖∞≤λ

max
p≥0,1·p=1

{c · p−w · (p− q)}

Collecting terms

min
‖w‖∞≤λ

{
w · q + max

p≥0,1·p=1
[(c−w) · p]

}

The inner term is an LP that clearly satis�es the Slater Conditions.

Taking its dual, this becomes

min
‖w‖∞≤λ

{
w · q + min

β,β1+w≥c
β

}

As required.
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Solution ( Method 3 )

Just express the primal as an LP and �nd the dual!

Part B

Show that the dual can be simpli�ed to the following 1-dimensional

optimization problem

min

{
n∑
i=1

qi max(ci − β + λ, 0) + β − λ : β ≥ max
1≤i≤n

(ci)− λ

}

Show that this program can be solved in O(n log n) time.

Solution

First, let u = w + λ1. Since ‖w‖∞ ≤ λ, it follows that

0 ≤ u ≤ 2λ1

Furthermore, remembering that 1 · q = 1,

w · q + β = q · u− (1 · q)λ+ β = q · u− λ+ β

As such, the dual is equivalent to the following LP

min q · u− λ+ β

s.t. 0 ≤ u ≤ 2λ1

u+ (β − λ)1 ≥ c

Writing this component-wise, we have that

min q · u− λ+ β

s.t. 2λ ≥ ui ≥ max(ci − β + λ, 0)

Now, consider that

• To ensure that this is feasible, we need

ci − β + λ ≤ 2λ ∀i

or in other words

β ≥ max
i

(ci)− λ

• Since every component of q is positive and the constraints on

each component of u are independent, we will clearly choose

the solution with the smallest u � ie: ui = max(ci,−β+λ, 0).
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Thus, this LP is equivalent to

min
β

(
n∑
i=1

qi max(ci − β + λ, 0)

)
− λ+ β

s.t. β ≥ max
i

(ci)− λ

Finally, note that the objective is a piecewise linear function of

β. Thus, if we sort the vector c (average complexity O(n log n)),
we immediately have a trivial bound on β and we can easily �nd

the point at which the gradient of the line goes from negative to

positive. Thus, sorting c gives us the solution.

It turns out that we can do even better. Indeed, since the qi sum
to 1, the +β in the objective can be brought into the sum and

then into the maximum, to obtain

min
β

(
n∑
i=1

qi max(ci + λ, β)

)
− λ

s.t. β ≥ max
i

(ci)− λ

In this form, it is clear the function is strictly increasing in β, and
therefore the optimal solution is β = maxi(ci) − λ. This can be

found in O(n) time � we simply need to look through all n items

of ci to �nd the maximum.

� � �
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