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Special Relativity 
 

• The Galilean Transformations between a frame S and a frame S ′ , moving at a 

speed v relative to it in the horizontal direction are 

x x v t

y y

z z

t t
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′∆ = ∆

 

• Problems with classical mechanics 

o Maxwell’s Laws of Electromagnetism did not conform to the Galilean 

Transformations – they predicted that the speed of light in a vacuum was 

( )
1
2

0oε µ
−
 – this expression involves only constants, and does not take into 

account the relative speed of the inertial frame. There were therefore two 

possibilities: 

� There was a given universal rest frame which contained a medium 

in which light travelled at ( )
1
2

0oε µ
−
 (the aether), and this is what 

Maxwell’s Equations were coming out with. This is very similar in 

the way sound travels in air. 

� The speed of light is ( )
1
2

0oε µ
−
 in all inertial frames. 

o Early beliefs were in the first theory; there was one observation that 

tended to support that theory, while another was at odds with it. Both 

were really attempts to find our velocity with respect to the aether’s. 

� Stellar Aberration – the light from celestial objects descended to 

us at an angle, as opposed to straight down. This was taken as 

evidence that we were moving relative to the aether, and that since 

light was travelling through it, the “aether wind” made light look 

like it was coming diagonally down at us: 

 
Bradley observed this in 1725, and was able to find 

4/ 10 radiansv cα −≈ ≈ . [This is explained in terms of special 

relativity using the relativistic addition of speeds – see later]. 
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� The Michelson-Morley Experiment used an interferometer like 

this one: 

 
Light from S splits at A and travels to B and C and back to A, 

where it is recombined. If the earth was moving through the aether, 

and an aether wind existed as shown, the path times ABA and 

ACA would be different, by approximately 2 /dv c . Using light of 

period about 10–15 s and plugging in numbers, this should 

correspond to a shift of about half a fringe (very easily observable). 

But such a shift was never observed. 

• Einstein’s basic Postulates were that: 

o All the laws of physics are the same in every inertial frame [ie: all laws of 

physics must be able to be written in terms of 4-vectors]. This implies that 

there is no way to distinguish between the frame one is in and any other 

frame by experiment (without comparison with another frame). It also 

implies that empty space is homogenous and isotropic. 

o The speed of light in a vacuum [note: can be different in other media!] is 

the same for all observers in any inertial frame. This really is two 

statements: 

� When light is emitted in one frame, it travels at c in that frame 

[fairly obvious from the relativity postulate]. 

� That same beam, when viewed in another frame, also travels at c. 

(ie: light doesn’t behave like a baseball!) 

• The consequences of these postulates are as follows: 

o Simultaneity – events simultaneous in one frame are not necessarily so in 

another. [Consider someone in the middle of a carriage beaming light to the two ends]. 

o Time dilation – t tγ ′∆ = ∆  (for two events at the same point in space in 

S ′ ). If something takes a certain time in S ′ , it takes longer in our frame. 

Note that for this result to occur, it is essential that the two events occur 

in the same place in S ′ ! Otherwise, we get the paradox! Thus, when S sees 
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S ′ ’s time go slowly and vice versa, it’s not a contradiction – it’s just that 

they’re using completely different scales (S ′  is using a scale in which 

0x ′∆ = , and S is using a scale in which 0x∆ = ) [Consider the weird photon 

clock in a train]. 

o Length contraction parallel to motion – LL L Lγγ′ ′= ⇒ =  (where L 

is the length in a frame where the distance is at rest). In other words, a 

ruler is longest in its rest frame, and moving things appear smaller. 

[Consider A standing next to a stick on the ground and B flying by, and consider the time 

it takes for B to get from one end of the stick to the other according to both or consider 

the time it takes for light to go back and forth in a train]. To derive from the Lorentz 

Transformations, realise that length is a measurement of both ends of the stick at the 

same time (ie: a ∆x with a ∆t = 0), even in a frame in which the length is moving. Then, 

in a frame in which the length is stationary, even if ∆t ≠ 0, ∆x will be the length in that 

frame. The key point is that in a frame in which the length is moving, only measurements 

for which ∆t = 0 can be called lengths. 

o No length contraction perpendicular to motion [use the neat argument 

of a train on tracks – if there was perpendicular length contraction, then we can tell 

whether the frame we are in is moving by seeing which train comes off the tracks!]. 

• Note: synchronisation of clocks can be done by placing a light beam exactly in 

the middle of them, shining it, and setting both clocks to the same time when 

the light beam arrives to them. 

• We therefore need to modify the Galilean Transformations to get the Lorentz 

Transformations, which are consistent with these observations: 

2

v x
t t

c
γ
 ∆

′∆ = ∆ − 
  

 

[ ]x x v tγ′∆ = ∆ − ∆  

y y′∆ = ∆  

z z′∆ = ∆  

The inverse transform is obtained by substituting v = –v 

• We now define two quantities: 

o The time between two events that occur at the same place is the shortest 

time between those two events in any frame. This is the proper time, τ . 

o The distance between two events that occur at the same time is the 

shortest distance between those two events in any frame. This is the 

proper distance, ℓ . 

o Clearly, two events cannot have both a τ  and an ℓ , because if two events 

have proper distance ℓ , then they can hardly occur at the same place at 

which we would find the proper time.  
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• Another consequence of the transformations is the relativistic addition of speeds 

[To derive, consider the distance the particle travels in a given time in both frames, or the inner-

product of the velocity 4-vector]. 

 
In such a case: 
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NOTE: these formulae only need be used when transforming speeds between frames. If, for 

example, we have the speed of two things in one frame and we want to find their speeds relative 

to each other in that same frame, then we just add the speeds! 

• This allows us to explain stellar aberration in terms of relativity. We simply 

consider the photon travelling in S ′  and find the angle it must therefore be 

travelling at in S, using the addition of speeds. The result is approximately v/c. 

• A final consequence worthy of interest is the Relativistic Doppler Effect. If a 

source is moving away from us at a speed v in the x direction, and emitting EM 

radiation as a frequency f′, then we observe it at a frequency f, where 

1

1
f f

β

β

−
′=
+

 

This basically the everyday Doppler effect, but with a slight modification to 

take time-dilation into account: 

o Everyday Doppler effect – let the time between photon-emissions in our 

frame be t∆ . Then, in between two emissions, the photon will have moved 

towards us a distance c t∆ , and the source will have moved away from us 

a distance v t∆ . Thus, the distance between emitted photons is ( )c v t+ ∆ . 

o Time contraction – in the source’s frame, 1/t f′ ′∆ =  (this is the time 

between each emission). In a Newtonian world, we would have t t ′∆ = ∆ . 

However, under the Lorentz Transformations, t tγ ′∆ = ∆  (since the 

flashes occur in the same place in the source’s frame). 

S

S ′

v
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We then note that, therefore, the time T∆  between the arrivals of these flashes 

to our eye is the distance we found above divided by the speed (c). So: 

( )
( )( )2

1 1 1 1
( ) 1

11 11
T c v t t t t t

c

β β β
γ β γ

ββ ββ

+ + +
′ ′ ′ ′ ′∆ = + ∆ = + ∆ = ∆ = ∆ = ∆

−− +−
 

And since the frequency is 1/Time period: 

1 1 1 1

1 1
f f

T t

β β

β β

− −
′= = =

′∆ ∆ + +
 

• And of course, another consequence is that the speed of light is the ultimate 

speed. This, however, only applies to mass (energy, actually). Something that 

has neither mass nor energy (eg: the point of intersection of two rulers) can 

move arbitrarily fast up to infinity. 

• Experimental evidence for relativity includes: 

o Time dilation in the decay of muons – cosmic rays produce shower 

of muons at the top of the atmosphere. These have a lifetime of only 

about 2 µs, and so should travel only a few hundred metres before 

decaying (their speeds are close to c). However, in practise, we measure 

most of them at ground level, after travelling through many km of 

atmosphere. This is because the “muon clocks” measure proper time 

between events, whereas we measure longer times on earth. 

o The Michelson-Morley experiment is direct evidence for the absence 

of aether and therefore of the constancy of the speed of light in a 

vacuum. More recent work has shown that there is no effect greater 

than on thousandth of that expected under the aether hypothesis. 

o Atomic clocks on jet aircrafts which were sent round the world ran 

slow compared with identical clocks kept stationary on the ground. 

[This was affected by gravitational potential (due to the general 

theory), but modifications were applied. 

o Magnetic forces between two current-carrying wires can be calculated 

from relativistic modification of the electrostatic forces between the 

charges in the wires. This demonstrates the consistency between 

electromagnetism and mechanics brought about by Einstein’s 

postulates. 

o Clocks in GPS satellites need to be adjusted both to take into account 

their less negative gravitational potential and the effects of special 

relativity, given that they are moving. Otherwise, earth-base clocks are 

found to drift. 
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• The vector ( )c t x y z∆ ∆ ∆ ∆  is a 4-vector [a 4-dimensional vector that 

transforms between frames according to the Lorentz Transformations] In matrix 

form: 

0 0

0 0

0 0 1 0

0 0 0 1

c t c t

x x

yy

zz

γ γβ

γβ γ

 ′∆  ∆ −        ′  ∆ ∆−        =      ∆′ ∆          ∆  ′ ∆       

 

Where /xv cβ =  

Notes: 

o The inner product of two such spacetime 4-vectors is an invariant, 

irrespective of the frame. Thus: 

( ) ( ) ( )
2 2 22c t x s∆ − ∆ = ∆  

Where the quantity s∆  is called the interval and is an invariant under the 

Lorentz Transformations. 
 

Note that this statement expressed with 0s∆ =  is simply the speed of 

light postulate! This, however, is more general. It is exactly analogous to 

the fact that the distance between two points in 3D space is invariant in 

any frame. 

o We distinguish between three kinds of intervals: 

� ( )
2

0s∆ >  – Timelike separated events 

If ( )
2

0s∆ > , then x
t c< . This means that there exists an 

inertial frame with v < c in which the two events occur at the 

same place (this is because it is possible for a particle to get 

from one event to the other, and in the frame of that particle, 

they both occur in the same place). 
 

The time between the events in this frame is, of course, the 

proper time, s
cτ ∆= . For timelike separated, the invariant takes 

the form: 

( ) ( )
22 2x

ct τ∆∆ − =  

� ( )
2

0s∆ <  – Spacelike separated events 

If ( )
2

0s∆ < , then 1t
x c< . This means that there exists an 

inertial frame with v < c in which the two events occur at the 

same time (to see that this is true, use the Lorentz 

Transformations or a Minkowski Diagram). 
 



Physics Revision Notes  © Daniel Guetta, 2006 

The distance between the events in this frame is, of course, the 

proper distance, s=ℓ . For spacelike separated events, the 

invariant takes the form: 

( ) ( )
2 22 2c t x∆ − ∆ = ℓ  

NOTE: The quantity ∆x in any frame where ∆t ≠ 0 is not a length! 

� ( )
2

0s∆ =  – Lightlike separated events 

If ( )
2

0s∆ = , then x
t c= , and it is impossible to find a frame 

in which the two events occur at the same time or the same 

place. This is because the frame would have to travel at the 

speed of light. As we watch these event in a frame going 

successively faster and faster, the distance between then and the 

time between them tend to 0, but never quite get there. 

• It turns out that here is also a Velocity 4-vector that exists; if we simply divide 

every component of the spacetime 4-vector by dτ , the proper time of the event 

which is invariant in any frame, and then note that d d /tτ γ= , we find that 

the vector ( )x y zc v v vγ  is needed a 4-vector. The velocity addition 

formulae can be derived from this by using the invariance of the inner product 

of two 4-vectors (it gets much too messy with the Lorentz Matrix above). 

• Note that it often helps to use units where c = 1. This can be done either by: 

o Using lengths in which one unit is equal to c metres. At the end, divide by 

c for every time unit. 

o Units times in which one unit is equal to 1c  seconds. At the end, multiply 

by c for every distance unit. 

• A Minkowski Diagram is one in which we plot distance against ct. The first 

thing to note is that a photon simply appears on the diagram as a straight line 

at a 45° angle to both the axes. Now, let frame S ′  move at a speed v (along the 

x-axis) with respect to frame S. What do the x ′  and ct ′  axes look like when 

superimposed onto the x and ct axes? 

 x

ct

x ′

ct ′ Path of a photon 

in all frames 

World line of a 

stationary observer in S 

World line of a 

stationary observer in S′ 
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The two world lines in S′ get closer and closer to the photon world line, but 

never quite get there, since nothing can travel at the speed of light. 

 

Events can then just be plotted on the diagram and the values of x and t read 

off. For example: 

 
It is important, however, to realise that the scale on each of the axes is 

different. It can be obtained by calibration with an invariant: 

 
We then note that the scales on the two axis must be the same, because the ray 

line bisects one set of axes (and therefore every set) and x = ct. 

 

Finally, we note that Minkowski Diagrams are very useful to view the three 

kinds of interval we described above. We note that since 

( ) ( ) ( )2 2 2s c t x∆ = ∆ − ∆ , ( )
2

s∆  is a measure of the inclination of the line 

between two events in a Minkowski diagram; for example, if ( )
2

0s∆ > , 

( ) ( )2 2c t x∆ > ∆ , and the line between the two events is inclined at more than 

45°. Thus: 

 
Notice how: 

x

ct

x ′

ct ′

Lightlike 

separated events 

Spacelike 

separated events 

Timelike 

separated events 

x

ct

x ′

ct ′

1 

1 

(Rough) graph of 

x2 – c2t2 = 1 

x

ct

x ′

ct ′

A 

Ax

Act

Ax ′

Act ′
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o It is possible to find a velocity such that the x′ axis becomes parallel to the 

spacelike interval. At that point, the two events occur at the same time. It 

is even possible to find a velocity in which the order of the two events is 

reversed. However, it is never possible to find a velocity at which the time 

axis is parallel to the spacelike interval. Thus, there is no frame in which 

the two events occur at the same place. 

o Similar observations apply for the timelike interval. 

o It is never possible to find a velocity such that either of the axes is parallel 

to the lightlike interval. This means that there is no frame in which the 

events occur at the same time, and no frame in which the events occur at 

the same place. 

 

Now, assuming that we have an event A that occurs at the origin of a 

Minkowski diagram, we can make some interesting conclusions: 

 
We note that if A causes an event, then the event must be in the “future” cone 

of A (for example, B above). Similarly, any event that causes A must line in the 

“past” cone of A. This is because the line from A to another event is basically 

the path of the “information” from A that causes the other event, and that just 

can’t travel faster than the speed of light. If, instead, the event is in the 

“elsewhere” of A, then it is possible to find a frame in which both events occur 

at the same time at in which one occurs before the other. This is impossible, of 

course. 

 

Dynamics 
 

• The total momentum of a system is i i imγ=∑p v  and it is conserved. 

• The total energy of a system is 2
i imcγ=∑p  and is also conserved. 

x

ct

PAST 

FUTURE 

ELSEWHERE 

ELSEWHERE 

A 

B 

C 
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• The kinetic energy of a particle is ( ) 21K mcγ= −  – it is not conserved, and 

almost never used. 

• The Energy-momentum 4-vector is (can be obtained by multiplying the 

Velocity 4-vector by m, the rest mass, which is an invariant) 

, , ,x y z

E
p p p

c

 =   
P  

The following are important properties of P: 

o Both the conservation laws can be expressed as the fact that i∑P  is 

conserved. 

o This 4-vector is transformed between frames in the same way the space-

time 4-vector is (ie: using the Lorentz Transformations). 

o The inner-product of any two 4-vectors in Minkowski space is an invariant 

– ie: it has the same value in all frames. Since linear combinations of 4-

vectors are themselves 4-vectors, we can talk of the 4-vector of a system, 

P, which is i=∑P P . Taking the inner product of that vector with itself: 
2

2 2 2

2 x y z

E
p p p

c
⋅ = − − −P P  

Thus: 

2 2 2 2 4E c K c− =p  

Now, in a frame where every particle in the system is at rest 1iγ =  and 

the total energy of the system is 2
iE mc=∑ . However, in such a frame, 

pi = 0, and the expression above reduces to 2E Kc= . Thus, the K above 

is the total mass of the system in a frame in which all the particles are at 

rest (if there is such a frame). This frame, however, sometimes doesn’t 

exist. In such a case, we simply describe m as the energy in the ZMF 

frame. 

o For a single particle, K is equal to the rest mass of the particle. So: 

2 2 2 2 4E c m c− = ⋅ =p P P  

NOTE: Some want to call m the rest mass in contrast to γm, the “relativistic mass”, in 

the hope that if we take the mass of a particle to be γm, the particle then behaves in a 

Newtonian way. This, however is doomed to failure and senseless. For example, even 

though it is true that F = γma for transverse forces, it is not true for longitudinal forces. 

o In a ZMF, this invariant is simply equal to E2. 

o The (rest) mass of a photon is 0. Thus, 0⋅ =P P  for a photon. 

Furthermore, we can use the invariant to show that E2 = p2c2, which is 

rather useful since neither the usual expressions for momentum and energy 

yield anything useful [note that we’re not using the fact it’s an invariant 
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quantity – that’s only needed when we change frames. We’re just using 

the expression] 

o Another useful relation, which holds for particles of any mass [from the 

definition of p and E], is: 

2E c
=

p v
 

This is certainly the fastest may to get v if p and E are known. 

o In questions, the following tips are useful: 

� When finding a 4-vector for a given particle, the relation 

2 2 4 2 2E m c c= + p  is useful if only the energy or momentum are 

known. 

� To eliminate ugly 4-vectors, it often helps to re-arrange the 

conservation law and then take square both sides (ie: inner 

products). This means that we can put one 4-vector on one side of 

the equation by itself, so that it reduces to m when it is squared. 

 

Miscellaneous Points 

• The relativistic effects in a given frame depend only on the instantaneous 

velocity of the frame – not its acceleration [this is why in the twin paradox, the 

twin left on earth can freely apply special relativity to the twin travelling, even 

though she accelerates at some point]. However, if our frame is accelerating, 

then special relativity does not apply to us [this is one of the solutions of the 

twin paradox – the travelling twin can’t just look back and apply special 

relativity with the earthbound twin, because he’s accelerating]. This is a fact 

that is well supported by experimental evidence. 


